<span>virtual, upright, and magnified</span>
Boron Group
elements have three valence electrons and are fairly reactive. All of them are solids at room temperature. Boron is a very hard, black metalloid with a high melting point.
Given the following in the problem:
Distances : 2.0 m and 4.0 m
Sound waves : 1700 hz
Speed of sound : 340 m/s
Get the wavelength of the sound by using the formula:
Lambda = speed of sound/sound waves
Lambda = 340 m/s / 1700 hz
Lambda = 0.2
Get the path length difference to the point from the two speakers
L1 = 4mL2 = sqrt (42+ 22) m
Delta = 4.47
x = delta / lambda
If the outcome is nearly an integer, the waves strengthen at the point. If it is nearly an integer +0.5 the waves interfere destructively at the point. If it is neither the point is somewhat in in the middle.
Solving x = (4.47 – 4) / (0.2) = 2.35 an integer +0.5 so it’s a point of destructive interference.
Answer:
m = 684,865,8 g
Step-by-step explanation
V = 25,365.4 cm^3 Is volume
r = 27g/cm^3 Is density
To calculate mass you use formula:
m= V*r
m = 25,365.4 x 27
m = 684,865,8 g
Good luckkkk hope you do well