Explanation:
One way of classifying stars is by their temperature .
or
Science strives to be able to describe how stars and planets form and evolve. This requires theories to describe the processes which include:
Star and planet formation
Star and planet composition
Stellar and solar system evolution
The nuclear processes happening inside stars
The scientific method means that all theories are put to the test. By measuring or calculating the temperature, age and composition of other planets and stars the theories can be tested. If observed values of these parameters are not predicted by theories, then the theories are wrong and need to be revised or replaced.
So your finding acceleration first which is 30m/s divides by 6 seconds equals 5m/s^s and then multiply that by 1,400 kg and you have net force which is 7,000N
Answer:
14523.55J
Explanation:
The work done by the jogger against gravity is given by the following equation;

where m is the mass, g is acceleration due to gravity taken as
and h is the height of the hill.
Since the length of the hill is 132m and it is inclined at 12 degrees to the horizontal, the height is thus given as follows;

Substituting this into equation (1) with all other necessary parameters, we obtain the following;

Answer:
The correct option is b) In galaxy clusters
Explanation:
A type of galaxy that appear elliptical in shape and have an almost featureless and smooth image is known as the elliptical galaxy.
An elliptical galaxy is three dimensional and consists of more than one hundred trillion stars which are present in random orbits around the centre.
Elliptical galaxy is generally found in the galaxy clusters.
Answer:

Explanation:
For this case we can use the second law of Newton given by:

The friction force on this case is defined as :

Where N represent the normal force,
the kinetic friction coeffient and a the acceleration.
For this case we can assume that the only force is the friction force and we have:

Replacing the friction force we got:

We can cancel the mass and we have:

And now we can use the following kinematic formula in order to find the distance travelled:

Assuming the final velocity is 0 we can find the distance like this:
