Answer:
(1). False, (2). True, (3). False, (4). False, (5). True.
Explanation:
The term ''contouring'' in this question does not have to do with makeup but it has to deal with the measurement of all surfaces in planes. It is a measurement in which the rough and the contours are being measured. So, let us check each questions again.
(1). In contouring, it is necessary to measure position and not velocity for feedback.
ANSWER : b =>False. IT IS NECESSARY TO MEASURE BOTH FOR FEEDBACK.
(2). In contouring during 2-axis NC machining, the two axes are moved at the same speed to achieve the desired contour.
ANSWER: a=> True.
(3). Job shop is another term for process layout.
ANSWER: b => False
JOB SHOP IS A FLEXIBLE PROCESS THAT IS BEING USED during manufacturing process and are meant for job Production. PROCESS LAYOUT is used in increasing Efficiency.
(4). Airplanes are normally produced using group technology or cellular layout.
ANSWER: b => False.
(5). In manufacturing, value-creating time is greater than takt time.
ANSWER: a => True.
Answer:
If Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.
Explanation:
Reynolds number is an important dimensionless parameter in fluid mechanics.
It is calculated as;

where;
ρ is density
v is velocity
d is diameter
μ is viscosity
All these parameters are important in calculating Reynolds number and understanding of fluid flow over an object.
In aerodynamics, the higher the Reynolds number, the lesser the viscosity plays a role in the flow around the airfoil. As Reynolds number increases, the boundary layer gets thinner, which results in a lower drag. Or simply put, if Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.
Answer:
import java.util.Scanner;
public class InputExample {
public static void main(String[] args) {
Scanner scnr = new Scanner(System.in);
int birthMonth;
int birthYear;
birthMonth = scnr.nextInt();
birthYear = scnr.nextInt();
System.out.println(birthMonth+"/"+birthYear);
}
}
Answer:
Yes
Explanation:
Given Data
Temprature of source=750°c=1023k
Temprature of sink =0°c=273k
Work produced=3.3KW
Heat Rejected=4.4KW
Efficiency of heat engine(η)=
and
Heat Supplied 

η=
η=42.85%
Also the maximum efficiency of a heat engine operating between two different Tempratures i.e. Source & Sink
η=1-
η=1-
η=73.31%
Therefore our Engine Efficiency is less than the maximum efficiency hence the given claim is valid.