Answer:
3.14 × 10⁻⁴ m³ /s
Explanation:
The flow rate (Q) of a fluid is passing through different cross-sections remains of pipe always remains the same.
Q = Area x velocity
Given:
Diameters of 3 sections of the pipe are given as
d1 = 1.0 cm, d2 = 2.0 cm and d3 = 0.5 cm.
Speed in the first segment of the pipe is
v1 = 4 m/s.
From the equation of continuity the flow rate through different cross-sections remains the same.
Flow rate = Q = A1 v1 = A2 v2 = A3 v3.
Q = A1v1
=π/4 d²1 v1 = π/4 * 0.01² ×4.0 m³/s = 3.14 × 10⁻⁴ m³ /s
if i am changing velocity, i must also have <u>acceleration</u> and a net <u>force</u>
<h2>
<u>Newton's</u><u> </u><u>first</u><u> </u><u>law</u><u> </u><u>of</u><u> </u><u>motio</u><u>n</u></h2>
- Newton's first law of motion states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
According to Newton's first law of motion, without a force acting on an object, its velocity does not change. The net force acts on an object to change its velocity and cause acceleration.
Read more about velocity:
brainly.com/question/4931057
Answer:
a)
b)
Explanation:
Given:
mass of bullet, 
compression of the spring, 
force required for the given compression, 
(a)
We know

where:
a= acceleration


we have:
initial velocity,
Using the eq. of motion:

where:
v= final velocity after the separation of spring with the bullet.


(b)
Now, in vertical direction we take the above velocity as the initial velocity "u"
so,

∵At maximum height the final velocity will be zero

Using the equation of motion:

where:
h= height
g= acceleration due to gravity


is the height from the release position of the spring.
So, the height from the latched position be:



Answer:
Explanation:
,,,,,,,,,,,,,,,,,,,,,,,,,,,
Answer: An object at rest has zero velocity - and (in the absence of an unbalanced force) will remain with a zero velocity. Such an object will not change its state of motion.
Explanation: I hoped that helped!!