<h3>
Answer:</h3>
Initial temperature is 243.59°C
<h3>
Explanation:</h3>
The quantity of heat is calculated by multiplying the mass of a substance by its specific heat capacity and change in temperature.
That is; Q = m×c×ΔT
In this case;
Quantity of heat = 560 J
Mass of the Sample of Zinc = 10 g
Final temperature = 100°C
We are required to determine the initial temperature;
This can be done by replacing the known variables in the formula of finding quantity of heat,
Specific heat capacity, c, of Zinc = 0.39 J/g.°C
Therefore,
560 J = 10 g × 0.39 J/g°C × ΔT
ΔT = 560 J ÷ (3.9 J/°C)
= 143.59°C
But, since the sample of Zinc lost heat then the temperature change will have a negative value.
ΔT = -143.59°C
Then,
ΔT = T(final) - T(initial)
Therefore,
T(initial) = T(final) - ΔT
= 100°C - (-143.59°C)
= 243.59°C
Hence, the initial temperature of zinc sample is 243.59°C
The formula of mechanical advantage in this situation is:
MA = Input Force ÷ Output Force
The input force is the 30N applied to a screwdriver while the output force is the 75N force to the lid.
So,
MA = 30N/75N
MA = 0.40
Hence the mechanical advantage of the screwdriver is 0.40.
Answer: Temperature
Explanation: Temperature is a measure of average kinetic energy of particles in an object. The hotter the substance, higher is the average kinetic energy of its constituent particles. When we heat a substance, the particles that constitute the substance gain some energy and begin to move faster.