Answer:
See explanation.
Explanation:
Hello,
In this case, we could have two possible solutions:
A) If you are asking for the molar mass, you should use the atomic mass of each element forming the compound, that is copper, sulfur and four times oxygen, so you can compute it as shown below:

That is the mass of copper (II) sulfate contained in 1 mol of substance.
B) On the other hand, if you need to compute the moles, forming a 1.0-M solution of copper (II) sulfate, you need the volume of the solution in litres as an additional data considering the formula of molarity:

So you can solve for the moles of the solute:

Nonetheless, we do not know the volume of the solution, so the moles of copper (II) sulfate could not be determined. Anyway, for an assumed volume of 1.5 L of solution, we could obtain:

But this is just a supposition.
Regards.
Answer:- 13.6 L
Solution:- Volume of hydrogen gas at 58.7 Kpa is given as 23.5 L. It asks to calculate the volume of hydrogen gas at STP that is standard temperature and pressure. Since the problem does not talk about the original temperature so we would assume the constant temperature. So, it is Boyle's law.
Standard pressure is 1 atm that is 101.325 Kpa.
Boyle's law equation is:

From given information:-
= 58.7 Kpa
= 23.5 L
= 101.325 Kpa
= ?
Let's plug in the values and solve it for final volume.

On rearranging the equation for 

= 13.6 L
So, the volume of hydrogen gas at STP for the given information is 13.6 L.
We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.
<span>I would say only if one of your data points is the origin. But your experiment could have started with a non-zero velocity, for instance, which would rule out the origin as one of your data points. Even so, a "best fit" is not meant to be perfect, it is only meant to be the best that you can do with your particular data set.</span>
I think the answer is
Reduce friction
:)