Answer:
25.0g is the mass of sulfur
Explanation:
The sulfur and the oxygen are 50:50. That means there is 1 mole of S per mole of O.
To solve this question we need to convert the mass of O to moles, as moles of O = Moles of S, we can find the moles of S and its mass:
<em>Moles O = Moles S:</em>
12.5g O * (1mol / 16g) = 0.781 moles
<em>Mass S:</em>
0.781 moles * (32g / mol) =
<h3>25.0g is the mass of sulfur</h3>
Answer: Osmotic pressure : increases
Explanation:
Osmotic pressure is the minimum pressure which is applied to a solution to prevent the flow of solvent across a semipermeable membrane

= osmotic pressure
C= concentration in Molarity (number of moles of solute dissolved per liter of the solution)
R= solution constant
T= temperature
Thus as osmotic pressure is directly proportional top concentration, osmotic pressure will increase on increasing the concentration of a nonvolatile solute in water.
Answer:
When the Zebra arrived they ate all the food so the Unionid mussels declined as they died from the lack of food. Causing the Zebra Zebra numbers to increase and Unionid numbers to decline.
Mass of CO₂ = 132 g
<h3>Further explanation
</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
mole also can be formulated :

moles of CO₂ = 3
mass of CO₂(MW=44.01 g/mol) :

Answer:
Answer for the given statements: (1) T , (2) F , (3) T , (4) F , (5) F
Explanation:
At the given interval, concentration of HI = 
Concentration of
= 
Concentration of
= 
Reaction quotient,
, for this reaction =
species inside third bracket represents concentrations at the given interval.
So, 
So, the reaction is not at equilibrium.
As
therefore reaction must run in reverse direction to reduce
and make it equal to
. That means HI(g) must be produced and
must be consumed.