Answer:
48.51ms / 174.6 km/h
Explanation:
y = 1/2 x g x t^2 v = g x t
when y = 120m
120 = 1/2 x 9.8 x t^2
t^2 = 24.49
t = 4.95s
when t = 4.95s
v = 9.8 x 4.95
v = 48.51 m/s = 174.6 km/h
I'd say its realistic. But I don't really know that sry
Answer: Stationary or constant velocity
Explanation:
Objects with balanced forces acting on them experience no change in motion, or no acceleration. So these objects could either be stationary at rest or have a constant velocity. These include a hanging object, a floating object, an object on a table that doesn't move, and a car moving at a constant 10 mph
Answer:
The distance of separation is decreased
Explanation:
From Cuolomb's law, we know that the strength of charge is inversely proportional to the distance of separation between the charges. To mean that increasing the distance let's say from 2m to 3 m would mean initial strength getting form 1/4 to 1/9 which is a decrease. The vice versa is true hence the force of repulsion can increase only when we decrease the distance of separation.
The North Magnetic Pole is the point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downwards (in other words, if a magnetic compass needle is allowed to rotate about a horizontal axis, it will point straight down). There is only one location where this occurs, near (but distinct from) the Geographic North Pole and the Geomagnetic North Pole.
Answer:
(C) greater than zero but less than 45° above the horizontal
Explanation:
The range of a projectile is given by R = v²sin2θ/g.
For maximum range, sin2θ = 1 ⇒ 2θ = sin⁻¹(1) = 90°
2θ = 90°
θ = 90°/2 = 45°
So the maximum horizontal distance R is in the range 0 < θ < 45°, if θ is the angle above the horizontal.