NH₂-CH₂-COOH + HNH-CH₂-COOH → NH₂-CH₂-CO-NH-CH₂-COOH + H₂O
amide link
Answer:
Newton's Cradle is a neat way to demonstrate the principle of the CONSERVATION OF MOMENTUM.
What happens here is when the ball on one end of the cradle is swung and it hits the other balls that are motionless, or stationary, the momentum of the swinging ball is transferred to the next ball upon impact.
Momentum is not lost in this action, what happens when it hits the next ball, the momentum is transferred to the next one, and then the next, and the the next, till it reaches the last ball on the other end. Since nothing is next to the last ball, it pushes the ball upwards, which will swing down and repeat the process going the other way.
This also demonstrates the CONSERVATION OF ENERGY. As you will see, the energy continues to move through the other balls, passing it from one ball to the other, which keeps this constantly moving.
It true because in photosynthesis, you need celluos
D. Dependent on an objects position
Answer:
See explanation
Explanation:
The periodic table shows the atomic number and mass number of each element.
We know that the atomic number shows;
- The number of protons in the nucleus of the atom
- The number of electrons in the neutral atom of the element.
So we obtain the number of protons and electrons by looking at the atomic number shown in the periodic table.
We also know that;
Mass number = Number of protons + number of neutrons
Since number of protons = atomic number of the atom
Number of neutrons = Mass number - atomic number
Hence we obtain the number of protons by subtracting the atomic number from the mass number given in the periodic table.