Pulmonary Arteries: Blood vessels that carry deoxygenated blood from the heart to the lungs. Superior Vena Cava: A large vein that delivers deoxygenated blood from the upper body into the heart. Hope this helps
Answer:


Explanation:
The period of the comet is the time it takes to do a complete orbit:
T=1951-(-563)=2514 years
writen in seconds:

Since the eccentricity is greater than 0 but lower than 1 you can know that the trajectory is an ellipse.
Therefore, if the mass of the sun is aprox. 1.99e30 kg, and you assume it to be much larger than the mass of the comet, you can use Kepler's law of periods to calculate the semimajor axis:
![T^2=\frac{4\pi^2}{Gm_{sun}}a^3\\ a=\sqrt[3]{\frac{Gm_{sun}T^2}{4\pi^2} } \\a=1.50*10^{6}m](https://tex.z-dn.net/?f=T%5E2%3D%5Cfrac%7B4%5Cpi%5E2%7D%7BGm_%7Bsun%7D%7Da%5E3%5C%5C%20a%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGm_%7Bsun%7DT%5E2%7D%7B4%5Cpi%5E2%7D%20%7D%20%5C%5Ca%3D1.50%2A10%5E%7B6%7Dm)
Then, using the law of orbits, you can calculate the greatest distance from the sun, which is called aphelion:

Answer:
6 km/h west
Explanation:
During part c of the hike, the hiker moved 6 km west, and the time was 9.45 am to 10.45 am.
So, we have:
- displacement: d = 6 km west
- time taken: from 9.45 am to 10.45 am = 1 hour
Therefore, the average velocity is given by the ratio between displacement and time taken:

and the direction is the same as the displacement (west)
U = 6.5 m/s, initial speed
t = 3.6 s, time
a = 0.92 m/s², acceleration
Let v = the final velocity.
Then
v = u +at
v = (6.5 m/s) + (0.92 m/s²)*(3.6 s) = 9.812 m/s
Answer: 9.81 m/s
Answer:
Earth's gravity comes from all its mass. All its mass makes a combined gravitational pull on all the mass in your body. ... You exert the same gravitational force on Earth that it does on you. But because Earth is so much more massive than you, your force doesn't really have an effect on our planet.
Explanation: