I think this type of equation could be conducted in simple division equation since it does not involve drop rate.
we know that there is 500 ml of substance and should be infused within 8 hours period.
So the flow rate in ml/hr would be:
500/8 = 62.5 ml/hr
Answer:
It traveled 4 centimeters.
Explanation:
In a speed versus time graph, the distance travelled is given by the area under the graph.
In this graph we have the following:
- The speed of the object is v = 1 cm/s between time t = 0 s and t = 4 s
- The speed of the object is v = 0 cm/s between time t = 4 s and t = 8 s
Since the speed in the second part is zero, the distance travelled in the second part is zero. So, the only distance travelled by the object is the distance travelled during the first part, which is equal to the area of the first rectangle:

Answer:
The drill's angular displacement during that time interval is 24.17 rad.
Explanation:
Given;
initial angular velocity of the electric drill,
= 5.21 rad/s
angular acceleration of the electric drill, α = 0.311 rad/s²
time of motion of the electric drill, t = 4.13 s
The angular displacement of the electric drill at the given time interval is calculated as;

Therefore, the drill's angular displacement during that time interval is 24.17 rad.
My answer -
the corona,
the sun's outer layer, reaches temperatures of up to 2 million degrees
Fahrenheit (1.1 million Celsius). At this level, the sun's gravity can't
hold on to the rapidly moving particles, and it streams away from the
star.
The sun's activity shifts over the course of its 11-year cycle, with
sun spot numbers, radiation levels, and ejected material changing over
time. These alterations affect the properties of the solar wind,
including its magnetic field properties, velocity, temperature and
density. The wind also differs based on where on the sun it comes from
and how quickly that portion is rotating.
The velocity of the solar wind
is higher over coronal holes, reaching speeds of up to 500 miles (800
kilometers) per second. The temperature and density over coronal holes
are low, and the magnetic field is weak, so the field lines are open to
space. These holes occur at the poles and low latitudes, and reach their
largest when activity on the sun is at its minimum. Temperatures in the
fast wind can reach up to 1 million degrees F (800,000 C).
At the coronal streamer belt around the equator, the solar wind travels
more slowly, at around 200 miles (300 km) per second. Temperatures in
the slow wind reach up to 2.9 million F (1.6 million C).
p.s
Glad to help you and if you need anything else on brainly let me know so I can elp you again have an AWESOME!!! :^)