
Initial velocity of a car is 36 km/h . Find the distance after min, if it goes with acceleration 2 m/s².

Initial velocity, u = 36 km/h

Time, t = 1min
Acceleration, a = 2m/s²
Apply 2nd equation of motion

Answer:
Time of ascent is greater than time of descent.
Explanation:
The gravitational force always acts in the downward direction. The air drag always opposes the motion.
During ascent, the gravitational force and air drag act in opposite direction to the motion where as during descent, only air drag acts in opposite direction to the motion of the ball while gravitational force acts in the same direction. Thus, the time of ascent and descent become unequal with time of ascent being greater than time of descent.
Answer:
19.98Joules
Explanation:
Energy possessed by the body is the kinetic energy
Kinetic Energy = 1/2mv²
m is the mass
v is the velocity
For the 4kg moving at 6m/s
kE = 1/2 * 4 * 6^2
KE = 1/2 * 4 * 36
KE = 72Joules
For the 4kg moving at 5.1m/s
kE = 1/2 * 4 * 5.1^2
KE = 1/2 * 4 *26.01
KE = 52.02Joules
Amount of Energy lost = 72 - 52.02
Amount of Energy lost = 19.98Joules
Hence the amount of Energy lost is 19.98Joules
Answer
225 meters.
Explanation:
x=x0+30t-(1/2)(1.5)t^2
x=0+30(10)-(1/2)(1.5)(10)^2
x=300-75
x=225
Answer:
I think maybe C. They require a large amount of land disturbance and potential displacement of people
Explanation:
Hope this helps.