Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.
Answer:
Spices
Explanation:
Herbs are the leaves.
Vegetables are the seeds.
Fruits are the seeds.
So spices are the only option left.
The question is incomplete, complete question is :
In an organic structure, you can classify each of the carbons as follows: Primary carbon (1°) = carbon bonded to just 1 other carbon group Secondary carbon (2°) = carbon bonded to 2 other carbon groups Tertiary carbon (3°) = carbon bonded to 3 other carbon groups Quaternary carbon (4°) = carbon bonded to 4 other carbon groups How many carbons of each classification are in the structure below? How many total carbons are in the structure? How many primary carbons are in the structure? How many secondary carbons are in the structure? How many tertiary carbons are in the structure? How many quaternary carbons are in the structure?
Structure is given in an image?
Answer:
There are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.
Explanation:
Total numbers of carbon = 10
Number of primary carbons that is carbon joined to just single carbon atom = 6
Number of secondary carbons that is carbon joined to two carbon atoms = 1
Number of tertiary carbons that is carbon joined to three carbon atoms = 2
Number of quartenary carbons that is carbon joined to four carbon atoms = 1
So, there are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.
Answer:
<em>The correct option is D) Cows release all of their energy as heat.</em>
Explanation:
Not all of the energy gets travelled from one trophic level to another. Observations have shown that only 10% of the energy travels from one trophic level to another when an organism of the upper trophic level consumes an organism of the lower trophic level. This is because most of the energy is lost by organisms as heat.
So, let's consider that there is 100% energy in plants that the cow eat. The cows will only receive 10% of the energy from the plants. The organisms that will eat the cows will only receive 1%of the energy.