Answer:
A, B, F
Explanation:
I believe these are the answers, sorry if it is incorrect.
D. <span>Johannes Kepler argued that Earth was the center of the universe.
</span>
Answer:
The correct answer is - Damage to the nerves that control the diaphragm.
Explanation:
Abdominal breathing is a condition in which inferior half of the lungs can be seen relaxing or contracting and expanding with the breath. This condition occurs due to the various conditions that lead to the respiratory.
It is cause due to the damage to nerves that control the diaphragm. The phrenic nerve is one of the nerve of diaphragm initiates in the neck and passes down.
Thus, the correct answer is - Damage to the nerves that control the diaphragm.
The phrenic nerve is a nerve that originates in the neck (C3–C5) and passes down between the lung and heart to reach the diaphragm.
This is the same question that I just answered.
Have present the definition of acceleration:
a = Δv / Δt, this is change in velocity per unit of time.
a and v are in bold to mean that they are vectors.
1) a body traveling in a straight line and increasing in speed: CORRECT:
Acceleration is the change in velocity, either magnitude or direction or both. So, a body increasing in speed is accelerated.
2) a body traveling in a straight line and decreasing in speed: CORRECT
A decrease in speed is a change in velocity, so it means acceleration.
3) a body traveling in a straight line at constant speed: FALSE.
That body is not changing either direction or speed so its motion is not accelerated but uniform.
4) a body standing still : FALSE.
That body is not changind either direction or speed.
5) a body traveling at a constant speed and changing direction: CORRECT.
The change in direction means that the body is accelerated. The acceleration due to change in direction is named centripetal acceleration.
Explanation:
We want to find the statement that is proven by the fact that the balls reach the same height.
A isn't supported by the evidence. Balls can reach the same height without having the same initial speed.
B isn't supported by the evidence. Balls can reach the same height without having the same launch angle.
C is supported. Projectiles spend the same amount of time going up as they do coming down, so if two projectiles reach the same height, then they must spend the same amount of time in the air.
D isn't supported by the evidence. Balls thrown at the same speed and complementary angles have the same range but different heights.
E isn't supported by the evidence. The mass of the ball doesn't affect the height.