The mean may be calculated by summing the values of the refractive index and dividing the sum by the number of experiments. This is:
Mean = (1.45 + 1.56 + 1.54 + 1.44 + 1.54 + 1.53)/6
Mean = 1.51
The mean absolute error is the sum of the absolute values of errors divided by the number of trials:
MAE = (|1.45-1.51|+|1.56-1.51|+|1.54-1.51|+|1.44-1.51|+|1.54-1.51|+|1.53-1.51|)/6
MAE = 0.043
The fractional error is the MAE divided by the actual value:
Fractional error = 0.043 / 1.51
Fractional error = 43/1510
The percentage error is the fractional error multiplied by 100:
Percentage error = 2.85%
Answer:
Distance of the point where electric filed is 2.45 N/C is 1.06 m
Explanation:
We have given charge per unit length, that is liner charge density 
Electric field E = 2.45 N/C
We have to find the distance at which electric field is 2.45 N/C
We know that electric field due to linear charge is equal to
, here
is linear charge density and r is distance of the point where we have to find the electric field
So 
r = 1.06 m
So distance of the point where electric filed is 2.45 N/C is 1.06 m
Answer:
The heating element of the heater is made up of alloy which has very high resistance so when current flows through the heating element, it becomes too hot and glows red. But the resistance of cord which is usually of copper or aluminum is very low so it does not glow.
Answer: Partial pressure of nitrogen and xenon are 288mmHg and 548 mmHg respectively.
Explanation:
The partial pressure of a gas is given by Raoult's law, which is:

where,
= partial pressure of substance A
= total pressure
= mole fraction of substance A
We are given:


Mole fraction of a substance is given by:

And,

Mole fraction of nitrogen is given as:

Molar mass of
= 28 g/mol
Molar mass of
= g/mol
Putting values in above equation, we get:


To calculate the mole fraction of xenon, we use the equation:



Thus partial pressure of nitrogen and xenon are 288mmHg and 548 mmHg respectively.