Answer:
vp = 0.94 m/s
Explanation
Formula
Vp = position/ time
position: Initial position - Final position
Position = 25 m - (-7 m) = 25 m + 7 m = 32 m
Then
Vp = 32 m / 34 seconds
Vp = 0.94 m/s
Answer:
160,000 N
Explanation:
Given:
m = 320,000 kg
v₀ = 0 m/s
a = constant
t = 57 s
Δx = 810 m
Find: Fnet
Apply Newton's second law:
∑F = ma
Fnet = ma
To find Fnet, we must first find the acceleration.
x = x₀ + v₀ t + ½ at²
810 m = 0 m + (0 m/s) (57 s) + ½ a (57 s)²
a = 0.50 m/s²
Fnet = (320,000 kg) (0.50 m/s²)
Fnet = 160,000 N
Answer: 15.6 metres
Explanation:
Given that:
length of wave (λ)= ?
Frequency of wave F = 28 Hertz
Speed of wave (V) = 437 m/s
The wavelength is the distance covered by the wave in one complete cycle. It is measured in metres, and represented by the symbol λ.
So, apply V = F λ
Make λ the subject formula
λ = V / F
λ = 437 m/s / 28 Hertz
λ = 15.6 m
Thus, the length of the wave is 15.6 metres
Answer:
55.128kg
Explanation:
P= m×v
or, m=P/v = 430/7.8 = 55.128 kg
The correct answer is C the time to complete one orbit