cation
anion is negatively charged, so more electrons then protons,
cation is positively charged, so more protons thatn electrons
Answer:
The electrical loads in parallel circuits each have the same voltage drop, with equals the total applied voltage of the circuit.
Explanation:
I did some research and the voltage drop across any branch of a parallel circuit is the same as the applied voltage.
de Broglie wavelength (λ) is given by the equation
λ = h/p
where h=Planck’s constant whose value is 6.62 x 10^(−34) joule-seconds and
p = momentum of the particle(here electron)
In terms of kinetic energy(E) momentum(p) can be written as,
p=(2mE)^1/2
where m=mass of the particle.
Hence λ becomes
1 λ = h(2mE)^-1/2
Given here, E = 13.6 eV = 13.6×1.6×10^-19 joule
m(mass of electron)= 9.1×10^-31 kg
Putting these values in equation (1) we get ,
λ =0.332×10^(-9) meter
=3.32×10^(-10) meter
=3.32 Å
Answer:
Yes, the value will be the same.
Explanation:
Yes, or at least to some degree, that value of K will remain the same. You're looking for a difference in absorbance, and the difference should be visible at all wavelengths, not only at the limit. That being said, resolution varies, and if we don't read the value to the maximum, we can get a less accurate reading.
Gravitational acceleration (Ga) is inversely proportional to k / Distance^2
so Ga * Distance^2 = K
On the surface of Earth acceleration due to gravity is about 9.8m/s^2 with an average distance to the earths core of about 6371 km (Wolfram alpha).
So k = 9.8 * 6371^2
I'm presuming that your distance of 116 is km
As
Ga = k / distance^2
Ga = ((9.8 * 6371^2) / (6371 + 116)^2 ) = 397778481.8 / 42081169
= 9.45 m/s^2 to 2sf