Answer:
A. It is the ratio of the concentrations of products to the concentrations of reactants.
Explanation:
The equilibrium constant of a chemical reaction is the ratio of the concentration of products to the concentration of reactants.
This equilibrium constant can be expressed in many different formats.
- For any system, the molar concentration of all the species on the right side are related to the molar concentrations of those on the left side by the equilibrium constant.
- The equilibrium constant is a constant at a given temperature and it is temperature dependent.
- The derivation of the equilibrium constant is based on the law of mass action.
- It states that "the rate of a chemical reaction is proportional to the product of the concentration of the reacting substances. "
its volume this is the answer because the mercury will turn into gas. gas has more volume because it takes up more space as it spreads.
A) GPS monitoring and satellite imagery of crustal movements
Explanation:
The most recent evidence supporting the theory of plate tectonics is the use of GPS monitoring and satellite imagery of crustal movements.
GPS denotes Global Positioning Systems.
Satellite imagery is a recent advancement in the study of moving plates.
- The global positioning system uses the position of a system of satellites in space to delineate positions on earth.
- It works on the principles of triangulation and this helps to fix positions of objects on the earth surface.
- With this, the change in position of the plates can be recorded by known fixed positions of objects.
- Satellite imagery helps to map changes in terrain with time.
- Images can be correlated through time and the shift in terrains delineated.
learn more:
Wegener brainly.com/question/5002949
#learnwithBrainly
The heat required to raise the temperature of a certain mass of sample to a specific temperature change, we use the formula mCpΔT where m is mass, Cp is the specific heat of the substance and ΔT is the temperature change. In this case, we substitute and form 1.25 g x 0.057 cal/g C *20 C equal to 1.425 calories.
Answer:
2.29 g of N2
Explanation:
We have to start with the <u>chemical reaction</u>:

The next step is to <u>balance the reaction</u>:

We can continue with the <u>mol calculation</u> using the molar mass of
(65 g/mol), so:

Now, with the<u> molar ratio</u> between
and
we can <u>calculate the moles</u> of
(2:3), so:
With the molar mass of
we can <u>calculate the grams</u>:
I hope it helps!