Answer:
Both will reach to same height
Explanation:
Here we can see that friction is to be ignored
so we can say that work done by all the non conservative forces is change in mechanical energy
Since all non conservative forces here is zero
so mechanical energy is conserved here
so here we can say that sum of initial kinetic energy and potential energy = sum of final kinetic energy and potential energy
So we will have

now maximum height is given as

so here we can say that greatest height will be independent of the mass so they both will reach at same height
Kinetic energy = (1/2) (mass) x (speed)²
At 7.5 m/s, the object's KE is (1/2) (7.5) (7.5)² = 210.9375 joules
At 11.5 m/s, the object's KE is (1/2) (7.5) (11.5)² = 495.9375 joules
The additional energy needed to speed the object up from 7.5 m/s
to 11.5 m/s is (495.9375 - 210.9375) = <em>285 joules</em>.
That energy has to come from somewhere. Without friction, that's exactly
the amount of work that must be done to the object in order to raise its
speed by that much.
Coulomb's law is express as:
Answer:
22.05 Kg
Explanation:
Apply the formula:
GPE = Gravity . Mass . ΔHigh
2778.3 = 10 . Mass . 12.6
2778.3 = 126 . Mass
Mass = 2778.3/126
Mass = 22.05