<span>The first stage in the Gas model of stress is alarm and
mobilization. So the correct option in regards to the given question is option “d”.
Hans Selye is the person that evolved this model and he has explained this
model in complete details. He has broken
down his model into three stages. The first stage involves alarm and
mobilization. The second stage includes resistance. The third and the final
stage include the exhaustion stage. These are the stages that an organism goes
through to restore back the balance when stress is exerted from outside. </span>
The acceleration is the principal subordinate of the speed if the speed is steady the subsidiary is invalid if the speed is diminishing the subsidiary is negative. When discussing so much stuff we consider the momentary esteem.
<span>Note that when you back off, you back off by and large yet can locally in time quicken a tiny bit, suppose amid 1/tenth of a sec since you achieved a segment of the street which was slanting. In any case, this does not change the way that when the speed diminishes, the quickening is negative.</span>
Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.
Answer:
use the formula for option B ( d/t = s )
and
look at the graph representation to explain