Distance = (1/2) (acceleration) (time)²
1.4m = (0.835 m/s²) (time)²
(time)² = (1.4/0.835) s²
<em>time = 1.295 s</em>
The distance it falls is given by
x = (1/2)at^2
where a = acceleration due to gravity = 9.8 m/s^2
x = (1/2)(9.8)(18)^2
x = 1587.6 m
The answer is 1587.6 meters
Answer:
<h2>
HIGHER & MORE OR LARGER OR MORE </h2>
HENCE, THE ANSWER IS A. :)
Explanation:
<em><u>#</u></em><em><u>CARRYONLEARNING</u></em>
<em><u>BRAINLIEST</u></em><em><u> </u></em><em><u> </u></em><em><u>PLEASE</u></em><em><u> </u></em><em><u>I </u></em><em><u>REALLY </u></em><em><u>NEED</u></em><em><u> </u></em><em><u>IT</u></em>
Its tangential speed is constant although its velocity is changing. As the object changes direction, it results in a changing of positive and negative signs of the velocity. Although, the magnitude of the velocity (speed) is not changing.