To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
Answer:
221.17 kJ
Explanation: Note the heat of vaporization is in kJ/mol,then to determine the number of moles of water: divide the mass by 18. Then multiply the number of moles by the molar heat of vaporization of water.
N = 97.6 ÷ 18
Q=molar heat *moles
Q = (40.79) * (97.6 ÷ 18)
This is approximately 221.17 kJ
Answer: D
Explanation:
Cause removing excess waste from the body helps to maintain a steady health
It is made<span> by freezing flavored liquid (such as fruit juice) around a stick, generally resembling a tongue depressor. Often, the juice is colored artificially. Once the liquid freezes solid, the stick can be used as a handle to hold the ice pop</span>
Answer:
(a) 0 (b) 
Explanation:
Given that,
Mass of a supertanker, 
The engine of a generate a forward thrust of, 
(a) As the supertanker is moving with a constant velocity. We need to find the magnitude of the resistive force exerted on the tanker by the water. It is given by :
F = ma, a is the acceleration
For constant velocity, a = 0
So, F = 0
(b) The magnitude of the upward buoyant force exerted on the tanker by the water is equal to the weight of the ship.
F = mg

Hence, this is the required solution.