Answer:
the distance in meters traveled by a point outside the rim is 157.1 m
Explanation:
Given;
radius of the disk, r = 50 cm = 0.5 m
angular speed of the disk, ω = 100 rpm
time of motion, t = 30 s
The distance in meters traveled by a point outside the rim is calculated as follows;

Therefore, the distance in meters traveled by a point outside the rim is 157.1 m
The electrical force acting on a charge q immersed in an electric field is equal to

where
q is the charge
E is the strength of the electric field
In our problem, the charge is q=2 C, and the force experienced by it is
F=60 N
so we can re-arrange the previous formula to find the intensity of the electric field at the point where the charge is located:
Answer:
x=22.33m
Explanation:
Kinematics equation for constant deceleration:

Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt

So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.

Putting all values

Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.