Answer:
Thermal Conductivity Easily Transmits Heat Among Fine Ceramics
Answer:
The potential difference is the drop in voltage that occurs across a resistor as current flows through it in a circuit, potential difference or voltage(V) = current (I) *resistance (R), or to abbrevate V = I*R. In this case, I = 5amps and R = 10 ohms, so V = 5 * 10 = 50volts
A. the medium through which the light travels changes.
Explanation:
Light waves will continue to travel in a straight line in all directions from their source unless the medium through which the light travels changes.
A change in medium causes light to exhibit different properties. Also, when light hits an obstacle, they can be diffracted.
- The way light travels on crossing a boundary differs.
- At the boundary between two medium, light can either be reflected back or refracted when they cross the medium
- This will cause the light rays to bend towards or away from the normal depending on the properties of the medium.
Learn more:
Refraction brainly.com/question/12370040
#learnwithBrainly
Answer:
The speed of the car, v = 19.997 m/s
Explanation:
Given,
The centripetal acceleration of the car, a = 13.33 m/s²
The radius of the curve, r = 30 m
The centripetal force acting on the car is given by the formula
F = mv²/r
Where v²/r is the acceleration component of the force
a = v²/r
Substituting the values in the above equation
13.33 = v²/30
v² = 13.33 x 30
v² = 399.9
v = 19.997 m/s
Hence, the speed of the car, v = 19.997 m/s
Answer:
To find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.
Explanation:
The emissive power of a light bulb can be given by the following formula:
E = σεAT⁴
where,
E = Power Input or Emissive Power
σ = Stefan-Boltzmann constant
ε = Emissivity
A = Area
T = Absolute Temperature
Therefore,
A = E/σεT⁴
So, to find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.