Answer:
The high system pressure and relatively large chlorine molecule size.
Explanation:
Having the expression of the ideal gas, and clearing the pressure, we have:
P = nRT/V
Meanwhile, for a non-ideal gas we have the following equation:
P = (nRT / V-nb) - n2a/V2
In this equation, high pressures and low temperatures have an influence on nonideal gases.
Therefore, at high pressures, the molecules in a gas are closer together and have high intermolecular forces. On the other hand, at low temperatures, the kinetic energy of a gas is reduced, so that the intermolecular attractive forces are also reduced.
Electrons is what defines which element appears in which block.
The molecular weight of unknown gas : 23.46 g/mol
<h3>Further explanation</h3>
Given
A vessel contains 10% of oxygen and 90% of an unknown gas.
diffuses rate of mixed gas = 86 s
diffuses rate of O₂ = 75 s
Required
the molecular weight of unknown gas (M)
Solution
The molecular weight of mixed gas :(M O₂=32 g/mol)

Graham's Law :
