Answer:
a) ΔV = 25.59 V, b) ΔV = 25.59 V, c) v = 7 10⁴ m / s, v/c= 2.33 10⁻⁴ ,
v/c% = 2.33 10⁻²
Explanation:
a) The speed they ask for electrons is much lower than the speed of light, so we don't need relativistic corrections, let's use the concepts of energy
starting point. Where the electrons come out
Em₀ = U = e DV
final point. Where they hit the target
Em_f = K = ½ m v2
energy is conserved
Em₀ = Em_f
e ΔV = ½ m v²
ΔV =
mv²/e (1)
If the speed of light is c and this is 100% then 1% is
v = 1% c = c / 100
v = 3 10⁸/100 = 3 10⁶6 m/ s
let's calculate
ΔV =
ΔV = 25.59 V
b) Ask for the potential difference for protons with the same kinetic energy as electrons
K_p = ½ m v_e²
K_p =
9.1 10⁻³¹ (3 10⁶)²
K_p = 40.95 10⁻¹⁹ J
we substitute in equation 1
ΔV = Kp / M
ΔV = 40.95 10⁻¹⁹ / 1.6 10⁻¹⁹
ΔV = 25.59 V
notice that these protons go much slower than electrons because their mass is greater
c) The speed of the protons is
e ΔV = ½ M v²
v² = 2 e ΔV / M
v² =
v² = 49,035 10⁸
v = 7 10⁴ m / s
Relation
v/c = 
v/c= 2.33 10⁻⁴
Answer:
<h3>62.5N</h3>
Explanation:
The pressure at one end of the piston is equal to the pressure on the second piston.
Pressure = Force/Area
F1/A1 = F2/A2
Given
F1 = 250N
A1 = 2.0m²
A2 = 0.5m²
F2 = ?
Substituting the given values in the formula;
250/2 = F2/0.5
cross multiply
250*0.5 = 2F2
125 = 2F2
F2 = 125/2
F2 = 62.5N
Hence the force needed to lift this piston if the area of the second piston is 0.5 m^2 is 62.5N
Average speed = (total distance covered) / (time to cover the distance)
Total distance covered = (9.5m + 3.5m + 15m) = 28 meters
Time to cover the distance = 43 seconds
Average speed = (28 meters) / (43 seconds)
Average speed = 0.65 meters/second