Answer:
the answer is D
Explanation:
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object.
From that ragged, motley list of statements, only 'C' is true.
Answer:
202.8m
Explanation:
Given that A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 120 m/s. He misses his target and the cannonball splashes into the briny deep.
First calculate the total time travelled by using the second equation of motion
h = Ut + 1/2gt^2
Let assume that u = 0
And h = 3.5
Substitute all the parameters into the formula
3.5 = 1/2 × 9.8 × t^2
3.5 = 4.9t^2
t^2 = 3.5/4.9
t^2 = 0.7
t = 0.845s
To know how far the cannonball travel, let's use the equation
S = UT + 1/2at^2
But acceleration a = 0
T = 2t
T = 1.69s
S = 120 × 1.69
S = 202.834 m
Therefore, the distance travelled by the cannon ball is approximately 202.8m.
Answer:We have , a relation in frequency f and wavelength λ of a wave having the velocity v as ,
v=fλ ,
given f=60Hz , λ=20m ,
therefore velocity of wave , v=60×20=1200m/s
To increase the acceleration of the car using the same engine, the mass of the car must be decreased.
<h3>
What is Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that path unless acted upon by an external force.
The first law is also called the law of inertia because it depends on the mass of the object. The greater the mass, the greater the inertia and more reluctant the object will be to move.
Thus, to increase the acceleration of the car using the same engine, the mass of the car must be decreased.
a = F/m
Learn more about Newton's law here: brainly.com/question/25545050
#SPJ1