Answer:
Samira's model is incorrect because not all atoms are accounted for
Explanation:
The image of Samira's model has been attached to this answer to enhance the explanation.
What is depicted in that model is rightly regarded as a chemical change. In a chemical change atoms of substances are rearranged as new substances are formed.
However, all atoms in the products must also be found in at least one of the reactants. In this case we have an atom in one of the products that is not accounted for. Hence the model is incorrect.
We are given that the balanced chemical reaction is:
cacl2⋅2h2o(aq) +
k2c2o4⋅h2o(aq) --->
cac2o4⋅h2o(s) +
2kcl(aq) + 2h2o(l)
We known that
the product was oven dried, therefore the mass of 0.333 g pertains only to that
of the substance cac2o4⋅h2o(s). So what we will do first is to convert this
into moles by dividing the mass with the molar mass. The molar mass of cac2o4⋅h2o(s) is
molar mass of cac2o4 plus the
molar mass of h2o.
molar mass cac2o4⋅h2o(s) = 128.10
+ 18 = 146.10 g /mole
moles cac2o4⋅h2o(s) =
0.333 / 146.10 = 2.28 x 10^-3 moles
Looking at
the balanced chemical reaction, the ratio of cac2o4⋅h2o(s) and k2c2o4⋅h2o(aq) is
1:1, therefore:
moles k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles
Converting
this to mass:
mass k2c2o4⋅h2o(aq) = 2.28
x 10^-3 moles (184.24 g /mol) = 0.419931006 g
Therefore:
The mass of k2c2o4⋅<span>h2o(aq) in
the salt mixture is about 0.420 g</span>
Hey there!:
Molar mass MgCl2 = 95.2110 g/mol
So:
1 mole MgCl2 -------------- 95.2110 g
moles MgCl2 ---------------- 319 g
moles MgCl2 = 319 * 1 / 95.2110
moles MgCl2 = 319 / 95.2110
=> 3.350 moles of MgCl2
Hope that helps!
1 electron has charge =1.602* 10⁻¹⁹ C
1 mole of electrons have 1.602* 10⁻¹⁹*6.02*10²³C = 9.64*10⁴ C/1mol
One ion Co²⁺ takes 2e⁻ to become Co⁰.
1 mol of Co²⁺ ions take 2 mole of e⁻ to become Co⁰, so
0.30 mol Co²⁺ ions take mole of 0.60 mol e⁻ to become Co⁰
9.64*10⁴(C/1mol) *0.60 (mol)≈ 5.8 *10⁴ Coulombs.
Correct answer is C