Answer:
Particles can be classified as hadrons – baryons and mesons – and leptons, each with its anti-particle, and they should know that interactions between these particles can be described in terms of transfer of other particles known as vector bosons.
Explanation:
Your Welcome, if you could give me Brainlist I would appreciate it!
Yes, but the velocity of the bullet would have to be much higher. Because momentum is defined as p=mv, for a bullet, which has a much, much smaller mass than a car or a truck, to have the same value for p,
To do this you would take 64 and divide it by 4.
64/4= 16.
Your answer is 16.
The question involves the knowledge of kinematics and dynamics. The answers are;
a) Time taken to stop the car = 10 s
b) The operation that slows the car is Friction
c) The size of the force = 1200 N
<h3>
What is Deceleration ?</h3>
Deceleration is the opposite of acceleration. When an object is going to rest, it will be decelerating and the final velocity will be equal to zero.
Given that the driver of a car moving at 15 m/s along a straight level road applies the brakes. The car decelerates at a steady rate of 3/2 m/s²
a) How long does the car take to stop can be found by using the formula
v = u - at
Where
Substitute all the parameters into the formula
0 = 15 - 1.5t
1.5t = 15
t = 15/1.5
t = 10 s
b) The description of the operation that slows the car down after the brake pedal is pressed is simply friction.
c) If the mass of the car is 800. The size of the force slowing the car down will be F = ma
F = 800 × 1.5
F = 1200 N
Therefore, the time taken to stop the car is 10 s and the force slowing the car down is 1200 N
Learn more about Acceleration here: brainly.com/question/605631
#SPJ1
Answer:
3 m/s
Explanation:
We'll begin by calculating the change in displacement of the jogger. This can be obtained as follow:
Initial displacement (d₁) = 4 m
Final displacement (d₂) = 16 m
Change in displacement (Δd) =?
Δd = d₂ – d₁
Δd = 16 – 4
Δd = 12 m
Finally, we shall determine the determine the average velocity. This can be obtained as follow:
Change in displacement (Δd) = 12 m
Time (t) = 4 s
Velocity (v) =?
v = Δd / t
v = 12 / 4
v = 3 m/s
Thus, the average velocity of the jogger is 3 m/s