Answer:
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Explanation:
This is an angular kinematic exercise the equation for the angular position
the particle A
θ = θ₀ + ω₀ t + ½ α t²
They say for the particle B
w₀B = ½ w₀
αB = 2 α
In addition, the particle begins at a time t_1 after particle A, in order to use the same timer, we must subtract this time from the initial
t´ = t - t_1
l
et's write the equation of particle B
θ = θ₀ + w₀B t´ + ½ αB t´2
replace
θ = θ₀ + ½ w₀ (t -t_1) + ½ 2α (t -t_1)²
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Answer:
56327040000 metres
Explanation:
1 mile =
1609.344 metres
35000000 miles = x meters
we represent x by the number of meters which the requested miles maps to
we cross multiply, so 1609.344×35000000 = 1 × x
x =56327040000 metres
Answer:Let m = mass of asteroid y.Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.Given:F = 6.2x10⁸ Nd = 2100 km = 2.1x10⁶ mNote thatG = 6.67408x10⁻¹¹ m³/(kg-s²)The gravitational force between the asteroids isF = (G*m*(m/3))/d² = (Gm²)/(3d²)orm² = (3Fd²)/G = [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²)) = 1.229x10³² kg²m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)Answer: 1.1x10¹⁶ kg
Explanation:
The answer to this would inFact be A