Answer:
I'm pretty sure the answer is runoff
Answer:

Explanation:
As we know that there is no external torque on the system of two disc
then the angular momentum of the system will remains conserved
So we will have

now we have

also we have

now from above equation we have

now we have


Answer:
x = 6.94 m
Explanation:
For this exercise we can find the speed at the bottom of the ramp using energy conservation
Starting point. Higher
Em₀ = K + U = ½ m v₀² + m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
½ m v₀² + m g h = ½ m v²
v² = v₀² + 2 g h
Let's calculate
v = √(1.23² + 2 9.8 1.69)
v = 5.89 m / s
In the horizontal part we can use the relationship between work and the variation of kinetic energy
W = ΔK
-fr x = 0- ½ m v²
Newton's second law
N- W = 0
The equation for the friction is
fr = μ N
fr = μ m g
We replace
μ m g x = ½ m v²
x = v² / 2μ g
Let's calculate
x = 5.89² / (2 0.255 9.8)
x = 6.94 m
D I might be wroung .....i think this so the answer because biotic are all living things and bacteria is living
Well depending on what current the heater pulls im going to assume about 13, and 13A for the hair dryer, thats 26A on the 40A circuit.
I dont see how a lightbulb could overload the circuit.
Anyway, assuming the circuit is overloaded by some really big heater- the circuit would trip, the fuse would go and remain off. Most houses are fitted with seperate circuits for lights and sockets, so the light may remain on depending on the breaker board. - the reason for them all being able to run with the sudden overload may be due to a surge.
One solution to this is not to put such a large heater on the circuit with other appliances.
Another may be to dry your hair in the dark