Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
Answer:
<h2>0.102 L</h2>
Explanation:
The new pressure can be found by using the formula for Boyle's law which is

Since we are finding the new volume

From the question we have

We have the final answer as
<h3>0.102 L</h3>
Hope this helps you
Answer:
4.4×10² cm³
Explanation:
From the question given above, the following data were obtained:
Diameter (d) = 68.3 mm
Height (h) = 0.120 m
Volume (V) =?
Next, we shall convert the diameter (i.e 68.3 mm) to cm.
This can be obtained as follow:
10 mm = 1 cm
Therefore
68.3 mm = 68.3 mm / 10 mm × 1 cm
68.3 mm = 6.83 cm
Therefore, the diameter 68.3 mm is equivalent 6.83 cm.
Next, we shall convert the height (i.e 0.120 m) to cm. This can be obtained as follow:
1 m = 100 cm
Therefore,
0.120 m = 0.120 m/ 1 m × 100 cm
0.120 m = 12 cm
Therefore, the height 0.120 m is equivalent 12 cm.
Next, we shall determine the radius of the cylinder. This can be obtained as follow:
Radius (r) is simply half of a diameter i.e
Radius (r) = Diameter (d) /2
r = d/2
Diameter (d) = 6.83 cm
Radius (r) =?
r = d/2
r = 6.83/2
r = 3.415 cm
Finally, we shall determine the volume of the cylinder as follow:
Radius (r) = 3.415 cm
Height (h) = 12 cm
Volume (V) =?
Pi (π) = 3.14
V = πr²h
V = 3.14 × (3.415) ² × 12
V = 440 cm³
V = 4.4×10² cm³
Therefore, the volume of the cylinder is 4.4×10² cm³
Answer : Carbon tetrachloride,
will show the greatest freezing point lowering.
Explanation :
For non-electrolyte solution, the formula used for lowering in freezing point is,

where,
= lowering in freezing point
= molal depression constant
m = molality
As per question, the molality is same for all the non-electrolyte solution. So, the lowering in freezing point is depend on the
only.
That means the higher the value of
, the higher will be the freezing point lowering.
From the given non-electrolyte solutions, the value of
of carbon tetrachloride is higher than the other solutions.
Therefore, Carbon tetrachloride,
will show the greatest freezing point lowering.
Answer:
Malachite
Explanation:
Malachite is the only listed compound that must contain copper and oxygen.
Copper and oxygen are both elements found on the periodic table. They have the following symbols;
Copper = Cu
Oxygen = O
From the given choices, only option 1 has the symbol Cu and O.
So only malachite contains both copper and oxygen.