To remove magnesium oxide layer from the ribbon which may prevent or slow down the burning of magnesium ribbon.
Answer: Okay so here's the order lol from top to bottom
2, 1, 3, 4, 5
Explanation:
<h3><u>Answer;</u></h3>
A) HNO3 and NO3^-
<h3><u>Explanation;</u></h3>
- <em><u>HNO3 is a strong acid and NO3 is its conjugate base, meaning it will not have any tendency to withdraw H+ from solution.</u></em>
- Buffers are often prepared by mixing a weak acid or base with a salt of that weak acid or base.
- The buffers resist changes in pH since they contain acids to neutralize OH- and a base to neutralize H+. Acid and base can not consume each other in neutralization reaction.
Answer:
Every oxidation must be accompanied by a reduction.
Explanation:
Oxidation and reduction are complementary processes. There can be no oxidation without reduction and vice versa. It is actually a given an take affair. A specie looses electrons which must be gained by another specie to complete the process. This explains why the selected option is the correct one.
The heat transfer just occurred is mainly conduction.
Conduction happens when two objects are in contact with each other. In the hotter object, the molecules and/or free electrons have a higher kinetic energy, thus they'll travel and collide into other molecules, resulting in spreading the energy to the other object.
The heat transfer happens until thermal equilibrium, where both objects have the same temperature and their molecules have the same kinetic energy rate.
In addition, radiation is also happening since everything that has a higher temperature than the environment is a net emitter. They release electromagnetic waves that turn out to be radiation. These occur even without the presence of air.