An apple falling to the ground is not an example of centripetal acceleration.
To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>
Answer:
There are Microwaves, the type of electro magnetic radiation is a Micro-wave. We use x-rays, the type of electro magnetic radiation is a gamma wave. We also use radios, the type of electro magnetic radiation is a radio wave.
Explanation:
I remember doing this assignment too
To solve this problem we will apply the linear motion kinematic equations. On these equations we will define the speed as the distance traveled in a space of time, and that speed will be in charge of indicating the reaction rate of the individual. In turn, using the ratio of speed, position and acceleration, we will clear the position and determine the distance necessary for braking.
The relation to express the velocity in terms of position for constant acceleration is as follows

Here,
u = Initial velocity
v= Final velocity
a = Acceleration
= Initial position
s = Final position
PART 1) Calculate the displacement within the reaction time



In this case we can calculate the shortest stopping distance


PART 2)
PART 1) Calculate the displacement within the reaction time



In this case we can calculate the shortest stopping distance


While a person without alcohol would cost 517ft to slow down, under alcoholic substances that distance would be 616ft