Answer:
D. Air pressure lowers the temperature of the liquid molecules.
The molar concentration will be greater than 0.01 M
.
Since more of the compound was measured out than what was calculated, you can think of the solution as being 'stronger' than what it was calculated to be. Since a 'stronger' concentration results in a number that is higher, the molarity of this solution is going to be greater than 0.01 M.
Answer: A wavelenghth is the<u> distance between successive crests</u> of one <u>wave</u>.
Answer:
2MnO₄⁻ + 5Zn + 16H⁺ → 2Mn²⁺ + 8H₂O + 5Zn²⁺
Explanation:
To balance a redox reaction in an acidic medium, we simply follow some rules:
- Split the reaction into an oxidation and reduction half.
- By inspecting, balance the half equations with respect to the charges and atoms.
- In acidic medium, one atom of H₂O is used to balance up each oxygen atom and one H⁺ balances up each hydrogen atom on the deficient side of the equation.
- Use electrons to balance the charges. Add the appropriate numbers of electrons the side with more charge and obtain a uniform charge on both sides.
- Multiply both equations with appropriate factors to balance the electrons in the two half equations.
- Add up the balanced half equations and cancel out any specie that occur on both sides.
- Check to see if the charge and atoms are balanced.
Solution
Zn + MnO₄⁻ → Zn²⁺ + Mn²⁺
The half equations:
Zn → Zn²⁺ Oxidation half
MnO₄⁻ → Mn²⁺ Reduction half
Balancing of atoms(in acidic medium)
Zn → Zn²⁺
MnO₄⁻ + 8H⁺ → Mn²⁺ + 4H₂O
Balancing of charge
Zn → Zn²⁺ + 2e⁻
MnO₄⁻ + 8H⁺ + 5e⁻→ Mn²⁺ + 4H₂O
Balancing of electrons
Multiply the oxidation half by 5 and reduction half by 2:
5Zn → 5Zn²⁺ + 10e⁻
2MnO₄⁻ + 16H⁺ + 10e⁻→ 2Mn²⁺ + 8H₂O
Adding up the two equations gives:
5Zn + 2MnO₄⁻ + 16H⁺ + 10e⁻ → 5Zn²⁺ + 10e⁻ + 2Mn²⁺ + 8H₂O
The net equation gives:
5Zn + 2MnO₄⁻ + 16H⁺ → 5Zn²⁺ + 2Mn²⁺ + 8H₂O
The concentration of the solution is 5.0 molar, which is 5.0 mole/L. So in the 1.0 L of 5.0 molar KF salt solution, the moles of KF is 5.0molar*1.0L=5.0 mole. The molecular weight of KF is given in the question as 58.10 gram/mole, so the grams of KF is 58.10 gram/mole * 5.0 mole = 290.5 gram.