Answer:
Negative intrapleural pressure is the correct answer
Explanation:
Intrapleural pressure is more subatmospheric in the uppermost part of the thorax than in the lowermost parts in the standing horse.
Air moves from a region of higher pressure to one of lower pressure. Therefore, for air to be moved into or out of the lungs, a pressure difference between the atmosphere and the alveoli must be established. If there is no pressure difference, no airflow will occur.
Under normal circumstances, inspiration is accomplished by causing alveolar pressure to fall below atmospheric pressure. When the mechanics of breathing are being discussed, atmospheric pressure is conventionally referred to as 0 cm H2O, so lowering alveolar pressure below atmospheric pressure is known as negative-pressure breathing.
6050 J is the kinetic energy at D
<u>Explanation:</u>
In physics, the object's kinetic energy (K.E) defined as the energy it possesses during movement. It can be defined as the required work to accelerate a certain body weight in order to rest at a certain speed. When the body receives this energy as it speeds up (accelerates), it retains this energy unless speed varies. The equation is given as,

Where,
m - mass of an object
v - velocity of the object
Here,
Given data:
m = 100 kg
v = 11 m/s
By substituting the given values in the above equation, we get

Answer:
The difference between the two is, well for one
Spectrum: The entire range that the "waves" could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
It may confuse you but it makes sense to me (Sorry)
Explanation:
Answer:
a)
, b) 
Explanation:
a) The equation for vertical velocity is obtained by deriving the function with respect to time:

The velocities at given instants are, respectivelly:


The number of cans that would be considered lethal if 10g was lethal and there where 12oz in a can is 419 cans.
<h3>How to convert mass?</h3>
According to this question, caffeine concentration is 1.99 mg/oz.
1.99 milligrams can be converted to grams as follows:
1.99milligrams ÷ 1000 = 0.00199grams
This means that 0.00199grams per oz is the caffeine concentration.
If there were 12 oz in a can, then, 0.00199grams × 12 = 0.02388 grams in 1 can.
This means that if 10grams is considered lethal, 10grams ÷ 0.02388 grams = 419 cans would be lethal for consumption.
Therefore, the number of cans that would be considered lethal if 10g was lethal and there where 12oz in a can is 419 cans.
Learn more about conversion factor at: brainly.com/question/14479308
#SPJ1