1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reptile [31]
2 years ago
5

A motor lifts a 500kg elevator a height of 100 m at a constant speed in 50 secs. How much power did the motor supply

Physics
1 answer:
MA_775_DIABLO [31]2 years ago
3 0

Answer:

9,800 watts

Explanation:

The first step is to calculate the force

F= mg

= 500 × 9.8

= 4,900 N

The next step is to calculate the work done

= 4,900 × 100

= 490,000 joules

Therefore the power can be calculated as follows

Power= work done /time

= 490,000/50

= 9,800 watts

You might be interested in
How many different values of l are possible for an electron with principal quantum number n=5?
lions [1.4K]

Answer:

different value to l if n=5 are 0,1,2,3,4

7 0
3 years ago
The distance between two stations is 1995 Km. How much time will it take to cover the distance at an average speed of 19KM/hour
Flura [38]
105 hours or 4.375 days
5 0
3 years ago
Question 4 of 10
kiruha [24]
B hey what do u know i took that test to
5 0
3 years ago
I NEED HELP PLEASE, THANKS! :)
mrs_skeptik [129]

Answer:

1. Largest force: C;  smallest force: B; 2. ratio = 9:1

Explanation:

The formula for the force exerted between two charges is

F=K\dfrac{ q_{1}q_{2}}{r^{2}}

where K is the Coulomb constant.

q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.

For simplicity, let's combine Kq₁q₂ into a single constant, k.

Then, we can write  

F=\dfrac{k}{r^{2}}

1. Net force on each particle

Let's

  • Call the distance between adjacent charges d.
  • Remember that like charges repel and unlike charges attract.

Define forces exerted to the right as positive and those to the left as negative.

(a) Force on A

\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}}  - \dfrac{k}{(2d)^{2}}  +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(b) Force on B

\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}}  - \dfrac{k}{d^{2}}  + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(C) Force on C

\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}}  + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(d) Force on D

\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}}  - \dfrac{k}{(2d)^{2}}  - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(e) Relative net forces

In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

F_{A} : F_{B} : F_{C} : F_{D}  =  \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\

2. Ratio of largest force to smallest

\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}

7 0
3 years ago
Orlat
Nana76 [90]

The maximum force that the athlete exerts on the bag is equal to 1,500 N and in the opposite direction as the force that the bag exerts on the athlete.

<h3>Newton's third law of motion</h3>

Newton's third law of motion states that action and reaction are equal and opposite.

Fa = -Fb

The force exerted by the athlete on the bag is equal to the force the bag exerted on the athlete but in opposite direction.

Thus, the maximum force that the athlete exerts on the bag is equal to 1,500 newtons and in the opposite direction as the force that the bag exerts on the athlete.

Learn more about force here: brainly.com/question/12970081

#SPJ1

8 0
2 years ago
Other questions:
  • All chordates are vertebrates?<br> A. True <br> B. False
    6·2 answers
  • 2. What kinetic energy has a 1 tonne car travelling at 15 m/s?
    10·1 answer
  • A 3.6-volt battery is used to operate a cell phone
    13·2 answers
  • A 5-kg object experiences forces as shown in the diagram. Which statement best describes the motion of the object? A) The object
    14·1 answer
  • K20+H2O how many total oxygen atoms are there
    13·1 answer
  • How long does it take for carbon to become a fossil fuel
    13·2 answers
  • Can someone help me with the exercise 3 only c,d,e please!!!
    15·2 answers
  • what are geology,astronomy,and physics is the answer hypothesis,scientific inquiries,scientific discplines,or protocols?
    15·1 answer
  • What are ribosomes?<br><br> I'm tired. But I have insomnia. Big ugh moment. &lt;.&lt;.
    13·1 answer
  • if the angular momentum of a rigid body is changing, does that mean that there must be a net torque acting on the body?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!