The balanced reaction is 3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
).
<u>Explanation</u>:
A chemical equation is said to be balanced when the total number of atoms present on the reactants side is equal to the total number of atoms present on the product side.
The unbalanced chemical equation is as follows,
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)
To balance this equation, you need to look at how many atoms of each element are present on each side of the chemical equation.
Calcium has 1 atom on the reactant and 3 on the products side. To balance the reaction we need to multiply the calcium atom by 3 on the reactants side.
3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)
Now Nitrogen has a coefficient of 2 on both sides of the reaction. Hence the balanced chemical equation will thus be
3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)
Answer:
Time = 0.929s = 0.93s (2 s.f)
Explanation:
Rate constant, k = 34.1 M^-1s^-1
Initial Concentration, [A]o = 0.100M
Time = ?
Final Concentration [A] = 0.0240M
The parameters are represented in the following equation as;
1/[A] = kt + 1/[A]o
kt = 1/[A] - 1/[A]o
kt = 1/0.0240 - 1/0.1
kt = 31.67
t = 31.67 / 34.1
t = 0.929s = 0.93s (2 s.f)
To make 1 Molar solution of hemoglobin ; 1600 grams of hemoglobin will be dissolved in 1 liter of water
The molecular weight of Hemoglobin is approximately 16,000 Daltons, when hemoglobin is converted to mM
16000 Dalton = 16000 ( g/mol )
given that 1 Dalton = 1 g/mol
To make 1 molar solution of hemoglobin using 1 liter of water
1 liter = 1000 grams
16000 Dalton = 16000 g/mol
Hence 16,000 grams of Hemoglobin is required to make 1 Molar solution of hemoglobin using 1 liter of water.
learn more : brainly.com/question/23517096
Moving the electron away from the nucleus requires energy, so the electrons in the outer shell will have more energy than ones in the inner shell. Electrons always have a charge of -1, so the charge in the inner and outer shell will be the same. Therefore the answer is 3