Answer: A) Inconclusive; you would not know which of the two variables caused the change.
Explanation:
When you set up an experiment, you must make sure that you control the variables such that only one independent variable changes at a time, while all the remainder conditions (the other independent variables) are controlled (fixed).
By observing (measuring) the dependent variable, while only one independent variable changes you can understandhow such independent variable explains (determines) the dependent variable, leading to a conclusion.
Conversely, if two or more independent variables change at a time, then there is no way that you can tell how the output (dependent variable) is related with one or other of the changes of the indipendent variables. You wolud not be able to discriminate (distinguish) the effect of one or other variable, making the experiment inconclusive
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
Answer:
Other forms of energy can convert to mechanical energy
Explanation:
For example the electric or magnetic energy in a motor can convert to mechanical energy, or another example is when you put two magnets together they will clip together due to the magnetic energy that they have.
Answer:
D.
Explanation:
-log(1.0x10^-5) = pH
pH + pOH = 14 (rearrange it)
OH- = 10^-pOH = 1.0 x 10^-9
- Hope that helped! Let me know if you need further explantion.
Answer:
(a) 
(b) Rubidium
Explanation:
Hello,
This titration is carried out by assuming that the volume of base doesn't have a significant change when the mass is added, thus, we state the following data a apply the down below formula to compute the molarity of the base solution:

Solving for the molarity of base we've got:

Now, we can compute the moles of the base as:

(a) Now, one divides the provided mass over the previously computed moles to get the molecular mass of the unknown base:

(b) Subtracting the atomic mass of oxygen and hydrogen, the metal's atomic mass turns out into:

So, that atomic mass dovetails to the Rubidium's atomic mass.
Best regards.