Arc flash PPE
Coveralls
Fire replant clothing
vest
safety gloves and footwear
T=Vf-Vi/s
25m/s -15m/s/ 125m
10m/s /125m
=0.08s
I hope it’s correct !
Answer:
voltage across = 1.6 V
Explanation:
given data
resistance R = 57.61 Ω
capacitance c = 13.13 mF = 13.13 ×
F
inductance L = 196.03 mH = 0.19603 H
fixed rms output Vrms = 23.86 V
to find out
voltage across circuit
solution
we know resonant frequency that is
resonant frequency = 1 / ( 2π√(LC)
put the value
resonant frequency = 1 / ( 2π√(0.19603×13.13 ×
)
resonant frequency f = 3.1370 HZ
so current will be at this resonant is
current = Vrms / R
current = 23.86 / 57.61
current = 0.4141 A
and
so voltage across will be
voltage across = current / ( 2π f C )
voltage across = 0.4141 / ( 2π ( 3.1370) 13.13 ×
)
voltage across = 1.6 V
The equation for potential energy is denoted as;
Pe = mgh,
where m = the mass, g = acceleration due to gravity, and h = vertical height of the apple. We are given the units for everything but height, which is also what we are solving for. We can then algebraically rearrange our initial equation to solve for h;
h = (Pe)/(mg)
Plug in your given units, and solve!
Post-check:
h = Pe/mg
h = 175J/(0.36g)(-9.81m/s^2)
h = appr. 49.5 meters
Note: Potential energy is a vector quantity; the displacement of the apple will be a negative number, but the distance itself, a scalar quantity, will be the absolute value of that.