Answer:
They don't make a positive change in the world because they have made mistakes that aren't able to be made fixed and there are a lot of engineers who haven't study enough and know the important basis of coming to engineer.
Answer:
y ≈ 2.5
Explanation:
Given data:
bottom width is 3 m
side slope is 1:2
discharge is 10 m^3/s
slope is 0.004
manning roughness coefficient is 0.015
manning equation is written as

where R is hydraulic radius
S = bed slope



P is perimeter 

![Q = (2+2y) y) \times 1/0.015 [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} 0.004^{1/2}](https://tex.z-dn.net/?f=Q%20%3D%20%282%2B2y%29%20y%29%20%5Ctimes%201%2F0.015%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%200.004%5E%7B1%2F2%7D)
solving for y![100 =(2+2y) y) \times (1/0.015) [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} \times 0.004^{1/2}](https://tex.z-dn.net/?f=100%20%3D%282%2B2y%29%20y%29%20%5Ctimes%20%281%2F0.015%29%20%5B%5Cfrac%7B%283%2B2y%29%20y%7D%7B%283%2B2%5Csqrt%7B5%7D%20y%29%7D%5D%5E%7B2%2F3%7D%20%5Ctimes%200.004%5E%7B1%2F2%7D)
solving for y value by using iteration method ,we get
y ≈ 2.5
Answer: True
Explanation: Ceramics have the property that when the band gap present between the atoms are larger than the light energy then the tend to become opaque because the light scattering is caused . They also show the property of being translucent when there are chances of the light to get a path through the surface of ceramic so they get the light at some parts e.g.porcelain .Therefore the statement given is true that ceramics can be optically opaque or semi-transparent(translucent).
Answer:
Artefacts can influence our actions in several ways. They can be instruments, enabling and facilitating actions, where their presence affects the number and quality of the options for action available to us. They can also influence our actions in a morally more salient way, where their presence changes the likelihood that we will actually perform certain actions. Both kinds of influences are closely related, yet accounts of how they work have been developed largely independently, within different conceptual frameworks and for different purposes. In this paper I account for both kinds of influences within a single framework. Specifically, I develop a descriptive account of how the presence of artefacts affects what we actually do, which is based on a framework commonly used for normative investigations into how the presence of artefacts affects what we can do. This account describes the influence of artefacts on what we actually do in terms of the way facts about those artefacts alter our reasons for action. In developing this account, I will build on Dancy’s (2000a) account of practical reasoning. I will compare my account with two alternatives, those of Latour and Verbeek, and show how my account suggests a specification of their respective key concepts of prescription and invitation. Furthermore, I argue that my account helps us in analysing why the presence of artefacts sometimes fails to influence our actions, contrary to designer expectations or intentions.
When it comes to affecting human actions, it seems artefacts can play two roles. In their first role they can enable or facilitate human actions. Here, the presence of artefacts changes the number and quality of the options for action available to us.Footnote1 For example, their presence makes it possible for us to do things that we would not otherwise be able to do, and thereby adopt new goals, or helps us to do things we would otherwise be able to do, but in more time, with greater effort, etc
Explanation:
Technological artifacts are in general characterized narrowly as material objects made by (human) agents as means to achieve practical ends. ... Unintended by-products of making (e.g. sawdust) or of experiments (e.g. false positives in medical diagnostic tests) are not artifacts for Hilpinen.