Answer:
a. A
Explanation:
Kepler's First Law says that the orbits of planets are ellipses with the sun at one focus of the ellipse. Moreover, Kepler’s Second Law says that the line joining the planet to the sun sweeps out equal areas in equal times as it moves along its orbit. Finally, Kepler’s Third Law says that the ratio of the squares of the periods for two planets is equal to the ratio of the cubes of their semi-major axes.
By these laws, the comet A will have lower orbital speed.
Because an excess of carbon dioxide could lead to global warming and affect climate drastically causing it to be warmer and destroy habitats such as penguins or polar bears.
At the top of the mountain, when he tightens the cap onto the bottole, there is some water and some air inside the bottle. Then he brings the bottle down to the base of the mountain.
The pressure on the outside of the bottle is greater than it was when he put the cap on. If anything could get out of the bottlde, it would. But it can't . . . the cap is on too tight. So all the water and all the air has to stay inside, and anything that can get squished into a smaller space has to get squished into a smaller space.
The water is pretty much unsquishable.
Biut the air in there can be <em>COMPRESSED</em>. The air gets squished into a smaller space, and the bottle wrinkles in slightly.
Answer:
The waste product of photosynthesis is oxygen
Answer:
Explanation:
Charge on uranium ion = charge of a single electron
= 1.6 x 10⁻¹⁹ C
charge on doubly ionised iron atom = charge of 2 electron
= 2 x 1.6 x 10⁻¹⁹ C = 3.2 x 10⁻¹⁹ C
Let the required distance from uranium ion be d .
force on electron at distance d from uranium ion
= 9 x 10⁹ x 1.6 x 10⁻¹⁹ / r²
force on electron at distance 61.10 x 10⁻⁹ - r from iron ion
= 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
For equilibrium ,
9 x 10⁹ x 1.6 x 10⁻¹⁹ / r² = 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
2 d² = (61.10 x 10⁻⁹ - r )²
1.414 r = 61.10 x 10⁻⁹ - r
2.414 r = 61.10 x 10⁻⁹
r = 25.31 nm .