1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
4 years ago
11

Which of the following is a characteristic of electromagnetic waves?

Physics
2 answers:
goldfiish [28.3K]4 years ago
7 0
It is C-cannot travel very fast
liubo4ka [24]4 years ago
6 0

Answer:

its C

Explanation:

You might be interested in
Calcula el valor de la velocidad de las ondas sonoras en el agua sabiendo que su
dybincka [34]
  1. La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.
  2. La longitud de onda de las ondas sonoras es 1,470 metros.

1) Inicialmente, debemos determinar la velocidad de las ondas sonoras a través del agua (v), en metros por segundo:

v = \sqrt{\frac{K}{\rho} } (1)

Donde:

  • K - Módulo de compresibilidad, en newtons por metro cuadrado.
  • \rho - Densidad del agua, en kilogramos por metro cúbico.

Si sabemos que \rho = 1\times 10^{3}\,\frac{kg}{m^{3}} y K = 2,16\times 10^{9}\,\frac{N}{m^{2}}, entonces la velocidad de las ondas sonoras es:

v = \sqrt{\frac{2,16\times 10^{9}\,\frac{N}{m^{2}}}{1\times 10^{3}\,\frac{kg}{m^{3}} } }

v\approx 1469,694\,\frac{m}{s}

La velocidad de las ondas sonoras es aproximadamente 1469,694 metros por segundo.

2) Luego, determinamos la longitud de onda (\lambda), en metros, mediante la siguiente fórmula:

\lambda = \frac{v}{f} (2)

Donde f es la frecuencia de las ondas sonoras, en hertz.

Si sabemos que v\approx 1469,694\,\frac{m}{s} y f = 1000\,hz, entonces la longitud de onda de las ondas sonoras es:

\lambda = \frac{1469,694\,\frac{m}{s} }{1000\,hz}

\lambda = 1,470\,m

La longitud de onda de las ondas sonoras es 1,470 metros.

Para aprender más sobre las ondas sonoras, invitamos a ver esta pregunta verificada: brainly.com/question/1070238

6 0
2 years ago
In an LC circuit at one time the charge stored by the capacitor is 10 mC and the current is 3.0 A. If the frequency of the circu
Ronch [10]

Answer:

i_2=3.61\ A

Explanation:

<u>LC Circuit</u>

It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:

q, q_1, q_2 = charge of the capacitor in any time t, t_1, t_2

q_o = initial charge of the capacitor

\omega=angular frequency of the circuit

i, i_1, i_2 = current through the circuit in any time t, t_1, t_2

The charge in an LC circuit is given by

q(t) = q_0 \, cos (\omega t )

The current is the derivative of the charge

\displaystyle i(t) = \frac{dq(t)}{dt} = - \omega q_0 \, sin(\omega t).

We are given

q_1=10\ mc=0.01\ c, i_1=3\ A,\ q_2=6\ mc=0.006\ c\ ,\ f=\frac{1000}{4\pi}

It means that

q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]

i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]

From eq 1:

\displaystyle cos (\omega t_1 )=\frac{q_1}{q_0}

From eq 2:

\displaystyle sin(\omega t_1)=-\frac{i_1}{\omega q_0}

Squaring and adding the last two equations, and knowing that

sin^2x+cos^2x=1

\displaystyle \left ( \frac{q_1}{q_0} \right )^2+\left ( \frac{i_1}{\omega q_0} \right )^2=1

Operating

\displaystyle \omega^2q_1^2+i_1^2=\omega^2q_o^2

Solving for q_o

\displaystyle q_o=\frac{\sqrt{\omega^2q_1^2+i_1^2}}{\omega}

Now we know the value of q_0, we repeat the procedure of eq 1 and eq 2, but now at the second time t_2, and solve for i_2

\displaystyle \omega^2q_2^2+i_2^2=\omega^2q_o^2

Solving for i_2

\displaystyle i_2=w\sqrt{q_o^2-q_2^2}

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.

\displaystyle f=\frac{1}{4\pi}\ KHz

w=2\pi f=500\ rad/s

\displaystyle q_o=\frac{\sqrt{(500)^2(0.01)^2+3^2}}{500}

q_0=0.01166\ c

Finally

\displaystyle i_2=500\sqrt{0.01166^2-.006^2}

i_2=5\ A

3 0
3 years ago
Light travels in a straight line at a constant speed of 3,0 x 108 m/s for 4,1
zepelin [54]

Answer:

As the velocity of light is constant so the acceleration of the light is equal to zero.

a= dv/dt

Explanation:

4 0
3 years ago
if the instantaneous current in the circuit is giveen by I=3 sin theta amperes, the rms value of the current will be
Kisachek [45]

Answer:

I_{rms}=2.12\ A

Explanation:

Given that,

The instantaneous current in the circuit is giveen by :

I=3\sin\theta\ A

We need to find the rms value of the current.

The general equation of current is given by :

I=I_o\sin\theta

It means, I_o=3\ A

We know that,

I_{rms}=\dfrac{I_o}{\sqrt2}\\\\=\dfrac{3}{\sqrt2}\\\\=2.12\ A

So, the rms value of current is 2.12 A.

4 0
3 years ago
You have two square metal plates with side lengths of (6.50 C) cm. You want to make a parallel-plate capacitor that will hold a
gtnhenbr [62]

Answer:

The necessary separation between  the two parallel plates is 0.104 mm

Explanation:

Given;

length of each side of the square plate, L = 6.5 cm = 0.065 m

charge on each plate, Q = 12.5 nC

potential difference across the plates, V = 34.8 V

Potential difference across parallel plates is given as;

V = \frac{Qd}{L^2 \epsilon_o} \\\\d = \frac{V L^2 \epsilon_o}{Q}

Where;

d is the separation or distance between the two parallel plates;

d = \frac{VL^2 \epsilon_o}{Q} \\\\d =  \frac{34.8*(0.065)^2 *8.854*10^{-12}}{12.5*10^{-9}} \\\\d = 0.000104 \ m\\\\d = 0.104 \ mm

Therefore, the necessary separation between  the two parallel plates is 0.104 mm

6 0
4 years ago
Other questions:
  • The rate at which an object moves
    13·2 answers
  • The flow of cold dense air under the influence of gravity is called a _________ .
    14·1 answer
  • A moonshiner makes the error of filling a glass jar to the brim and capping it tightly. The moonshine expands more than the glas
    10·1 answer
  • Una tractomula se desplaza con rapidez de 69 km/h. Cuando el conductor ve una vaca atravesada enmedio de la carretera, acciona l
    6·1 answer
  • A rock has a mass of 25kg. The acceleration due to gravity is 10m/s and the height of the rock is 42 m. Find the potential energ
    13·2 answers
  • Eardrum vibrations are transmitted to the cochlea by a piston consisting of
    8·1 answer
  • An astronaut whose mass is 80 kg carries an empty oxygen tank with a mass of 10 kg. The astronaut throws the tank away with a sp
    11·1 answer
  • How much heat is needed to melt 1.5kg of ice and then to raise the temperature of the
    15·1 answer
  • What is the relationship between wave amplitude and wave energy?
    15·1 answer
  • Tapping into this energy source could provide at least 10 times the energy that can be obtained from the nation’s known coal res
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!