Answer:
b is the answer
Explanation:
because i did this before
To develop the problem it is necessary to apply two concepts, the first is related to the calculation of average data and the second is the Boltzmann distribution.
Boltzmann distribution is a probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system. It is given by

Where,
energy of that state
k = Boltzmann's constant
T = Temperature
With our values we have that
T= 250K




To make the calculations easier we can assume that the temperature and Boltzmann constant can be summarized as



Therefore the average energy would be,

Replacing with our values we have


Therefore the average internal energy is 
Answer:
1/4
Explanation:
If the distance between two charges is doubled, the attraction of repulsion between the two becomes weaker, and decreases to 1/4 of the original value.
Answer:
False, because current flow has no effect in the weight of a conductor.
Explanation:
Current flow has no effect in the weight of a conductor. Thus, the weight on the scale will be the same when current is flowing and when current is not flowing in the copper tube.
Therefore, If a copper tube has current flowing to the right in the presence of a magnetic field going forward ("into the board"), we expect the weight on the scale to be the same whether current is flowing or not.
Answer:
The rise in height of combined block/bullet from its original position is 0.45m
Explanation:
Given;
mass of bullet, m₁ = 12 g = 0.012 kg
mass of block of wood, m₂ = 1 kg
initial speed of bullet, u₁ = 250 m/s.
initial speed of block of wood, u₂ = 0
From the principle of conservation of linear momentum, calculate the final speed of the combined block/bullet system.
m₁u₁ + m₂u₂ = v(m₁+m₂)
where;
v is the final speed of the combined block/bullet system.
0.012 x 250 + 0 = v (0.012 + 1)
3 = v (1.012)
v = 3/1.012
v = 2.96 m/s
From the principle of conservation of energy, calculate the rise in height of the block/bullet combined from its original position.
¹/₂mv² = mgh
¹/₂v² = gh
¹/₂ (2.96)² = (9.8)h
4.3808 = 9.8h
h = 4.3808/9.8
h = 0.45 m
Therefore, the rise in height of combined block/bullet from its original position is 0.45m