Answer:
Fatigue occurs under conditions of high elastic stress, high stress fluctuations and high rate of loading
Explanation:
According to many definition of fatigue failure the fatigue occurs when in an especifyc point of the object there is involved many forces and tensions.
That tensions needs to be big in magnitud, de variations of the efforts it has to be with a lot of amplitude and the loading in the object it has to be with a lot of number of cycles.
If in the all of these three conditions are present the fatigue failure it would appear.
Answer:
c. an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Explanation:
Conduction refers to the transfer of thermal energy or electric charge as a result of the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.
Hence, the difference between an initial condition and a boundary condition for conduction in a solid is that an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Answer:
nothing much what class r u in
Answer:
<u><em>To answer this question we assumed that the area units and the thickness units are given in inches.</em></u>
The number of atoms of lead required is 1.73x10²³.
Explanation:
To find the number of atoms of lead we need to find first the volume of the plate:

<u>Where</u>:
A: is the surface area = 160
t: is the thickness = 0.002
<u><em>Assuming that the units given above are in inches we proceed to calculate the volume: </em></u>
Now, using the density we can find the mass:

Finally, with the Avogadros number (
) and with the atomic mass (A) we can find the number of atoms (N):
Hence, the number of atoms of lead required is 1.73x10²³.
I hope it helps you!