1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marta [7]
3 years ago
14

Refrigerant-134a is to be cooled by water in a condenser. The refrigerant enters

Engineering
1 answer:
KonstantinChe [14]3 years ago
4 0

Answer:

Refrigerant R-134a is to be cooled by waterin a condenser.The refrigerant enters thecondenser with a mass flow rate of 6 kg/minat 1 MPa and 70 C and exits at 35 C. The cool-ing water enters at 300 kPa and 15 C andleaves at 25 C. Neglecting pressure drops,determine a) the required mass flow rate ofthe cooling water, and b) the heat transferrate from the refrigerant to the water.SolutionFirst consider the condenser as the control volume. The process is steady,adiabatic and no work is done. Thus over any time intervalΔt,ΔEΔt=0and thusXin˙E=Xout˙Ewhere˙E=˙m h+12V2+gz650:351 Thermodynamics·Prof. Doyle Knight37

Background image

I only know this

sorry for errors

You might be interested in
Identify the measurement shown in figure 7 and state in centimeters ​
Sav [38]

Answer:

1.3cm

Explanation:

the arrow is 3 lines past the 1 so it is 1.3cm

6 0
3 years ago
Determine (with justification) whether the following systems are (i) memoryless, (ii) causal, (iii) invertible, (iv) stable, and
lina2011 [118]

Answer:

a.

y[n] = x[n] x[n-1]  x[n+1]

(i) Memory-less - It is not memory-less because the given system is depend on past or future values.

(ii) Causal - It is non-casual because the present value of output depend on the future value of input.

(iii) Invertible - It is invertible and the inverse of the given system is \frac{1}{x[n] . x[n-1] x[n+1]}

(iv) Stable - It is stable because for all the bounded input, output is bounded.

(v) Time invariant - It is not time invariant because the system is multiplying with a time varying function.

b.

y[n] = cos(x[n])

(i) Memory-less - It is memory-less because the given system is not depend on past or future values.

(ii) Causal - It is casual because the present value of output does not depend on the future value of input.

(iii) Invertible - It is not invertible because two or more than two input values can generate same output values .

For example - for x[n] = 0 , y[n] = cos(0) = 1

                       for x[n] = 2\pi , y[n] = cos(2\pi) = 1

(iv) Stable - It is stable because for all the bounded input, output is bounded.

(v) Time invariant - It is time invariant because the system is not multiplying with a time varying function.

3 0
2 years ago
A four-cylinder, four-stroke internal combustion engine operates at 2800 RPM. The processes within each cylinder are modeled as
Ulleksa [173]

Answer:

1) 287760.4 Hp

2) 18410899.5 kPa

Explanation:

The parameters given are;

p₁ = 14.7 lbf/in² = 101325.9 Pa

v₁ = 0.0196 ft³ = 0.00055501 m³

T₁ = 80°F = 299.8167 K

k = 1.4

Assumptions;

1) Air standard conditions are appropriate

2) There are negligible potential and kinetic energy changes

3) The air behaves as an ideal gas and has constant specific heat capacities of temperature and pressure

1) Process 1 to 2

Isentropic compression

T₂/T₁ = (v₁/v₂)^(1.4 - 1) = 10^0.4

p₂/p₁ = (v₁/v₂)^(1.4)

p₂ = p₁×10^0.4 =  101325.9*10^0.4 = 254519.153 Pa

T₂ = 299.8167*10^0.4 = 753.106 K

p₃ = 1080 lbf/in² = 7,446,338 Pa

Stage 2 to 3 is a constant volume process

p₃/T₃ = p₂/T₂

7,446,338/T₃ =   254519.153/753.106

T₃ = 7,446,338/(254519.153/753.106) = 22033.24 K

T₃/T₄ = (v₁/v₂)^(1.4 - 1) = 10^0.4

T₄ = 22033.24/(10^0.4) = 8771.59 K

The heat supplied, Q₁ = cv(T₃ - T₂) = 0.718*(22033.24 -753.106) = 15279.14 kJ

The heat rejected = cv(T₄ - T₁) = 0.718*(8771.59 - 299.8167) = 6082.73 kJ

W(net) = The heat supplied - The heat rejected = (15279.14 - 6082.73) = 9196.41 kJ

The power = W(net) × RPM/2*1/60 = 9196.41 * 2800/2*1/60 = 214582.9 kW

The power by the engine = 214582.9 kW = 287760.4 Hp

2) The mean effective pressure, MEP  = W(net)/(v₁ - v₂)

v₁ = 0.00055501 m³

v₁/v₂ = 10

v₂ = v₁/10 = 0.00055501/10 = 0.000055501

MEP  = 9196.41/(0.00055501 -  0.000055501) = 18410899.5 kPa

4 0
3 years ago
What are the 5 major forest types?
Nataly [62]

Answer:

1. Equatorial Evergreen or Rainforest

2. Tropical forest

3. Mediterranean forest

4. Temperate broad-leaved forest

5. Warm temperate forest

Explanation:

4 0
3 years ago
Read 2 more answers
Problem 2. The length of a side of the square block is 4 in. Under the application of the load V, the top edge of the block disp
White raven [17]

Answer and Explanation:

The answer is attached below

8 0
3 years ago
Other questions:
  • What should the resistance value be on a size 5 motor starter coil
    14·1 answer
  • Indicate on a tensile curve such quantities as yield stress, Young's modulus, UTS, toughness, point of necking, point of fractur
    7·1 answer
  • During the collision, is the magnitude of the force of asteroid A on asteroid B greater than, less than, or equal to the magnitu
    11·2 answers
  • Complete the following sentence. Engineers explore biology, chemistry, and physics for use in scenarios.
    8·2 answers
  • We need to design a logic circuit for interchanging two logic signals. The system has three inputs I1I1, I2I2, and SS as well as
    11·1 answer
  • 4. Two technicians are discussing the evaporative emission monitor. Technician A says that serious monitor faults cause a blinki
    14·1 answer
  • How did engineers help to create a ceiling fan
    8·1 answer
  • 10 properties of metals?<br> ​
    10·2 answers
  • According to mcclelland human motivation theory, individuals primarily motivated by achievement performance to work in teams
    11·1 answer
  • A kitchen contains one section of counter that's 20 inches
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!