Answer:
Final Temperature = 36.54 ⁰C
Explanation:
Lets suppose the gas is acting ideally, then according to Charle's Law, "<em>The volume of a fixed mass of gas at constant pressure is directly proportional to the absolute temperature</em>". Mathematically for initial and final states the relation is as follow,
V₁ / T₁ = V₂ / T₂
Data Given;
V₁ = 32 L
T₁ = 10 °C = 283.15 K ∴ K = °C + 273.15
V₂ = 35 L
T₂ = ??
Solving equation for T₂,
T₂ = V₂ × T₁ / V₁
Putting values,
T₂ = (35 L × 283.15 K) ÷ 32 L
T₂ = 309.69 K ∴ ( 36.54 °C )
Result:
As the volume is increased from 32 L to 35 L, therefore, the temperature must have increased from 10 °C to 36.54 °C.
Answer:
Gaseous nitrogen has unique chemical and physical properties that make it suitable for use in food processing. Nitrogen is inert which means it will not react with prepared food materials, which can alter their aromas or flavors. Also, gaseous nitrogen will effectively displace oxygen minimizing oxidation and the growth of microorganisms that cause foods to lose their freshness and deteriorate faster.
Explanation:
Source: https://www.generon.com/using-nitrogen-gas-in-food-packaging/
Because in difrent materials atoms are more compact or less compact.if they are less compact then it will be easear for them to move
Answer:
See explaination
Explanation:
The mole balance for a constant-volume batch reactor is given such as, For a first-order isothermal reaction, the time to reach a given conversion is the same for constant-pressure and constant-volume reactors. Also, the time is the same for a reaction of any order if there is no change in the number of moles.
Please kindly check attachment for the step by step solution of the given problem.