Answer:


Explanation:
From the question we are told that
Mass of the aluminum container 50 g
Mass of the container and water 250 g
Mass of the water 200 g
Initial temperature of the container and water 20°C
Temperature of the steam 100°C
Final temperature of the container, water, and condensed steam 50°C
Mass of the container, water, and condensed steam 261 g
Mass of the steam 11 g Specific heat of aluminum 0.22 cal/g°C
a) Heat energy on container
Generally the formula for mathematically solving heat gain

Therefore imputing variables we have

b) Heat energy on water
Generally the formula for mathematically solving heat gain

Therefore imputing variables we have


Answer:

Explanation:
As we know that we board in the car of ferris wheel at the bottom position
So we will have
final height of the car at angular displacement given as


here we know that


so we have


I'm assuming the question is time it will take for ball to reach ground, if it is then set equation to zero then use the quadratic formula, the possible t value is your answer then
This problem is a piece o' cake, IF you know the formulas for both kinetic energy and momentum. So here they are:
Kinetic energy = (1/2) · (mass) · (speed²)
Momentum = (mass) · (speed)
So, now ... We know that
==> mass = 15 kg, and
==> kinetic energy = 30 Joules
Take those pieces of info and pluggum into the formula for kinetic energy:
Kinetic energy = (1/2) · (mass) · (speed²)
30 Joules = (1/2) · (15 kg) · (speed²)
60 Joules = (15 kg) · (speed²)
4 m²/s² = speed²
Speed = 2 m/s
THAT's all you need ! Now you can find momentum:
Momentum = (mass) · (speed)
Momentum = (15 kg) · (2 m/s)
<em>Momentum = 30 kg·m/s</em>
<em>(Notice that in this problem, although their units are different, the magnitude of the KE is equal to the magnitude of the momentum. When I saw this, I wondered whether that's always true. So I did a little more work, and I found out that it isn't ... it's a coincidence that's true for this problem and some others, but it's usually not true.)</em>