It doesn't on account of radio waves are longer than optical waves. Radio waves are a sort of electromagnetic radiation with wavelengths in the electromagnetic range longer than infrared light. These long waves are in the radio locale of the electromagnetic range.
Answer:
A) 80 N
Explanation:
The closer the particles get, the stronger the Coulomb force, which elongates choices C and D. The Coulomb force is inversely proportional to the distance squared. If the distance is cut in half, the force is multiplied by the reciprocal of (1/2)^2, which is 4. Multiplying it out, 20 times 4 is 80 N.
If it produces 20J of light energy in a second, then that 20J is the 10% of the supply that becomes useful output.
20 J/s = 10% of Supply
20 J/s = (0.1) x (Supply)
Divide each side by 0.1:
Supply = (20 J/s) / (0.1)
<em>Supply = 200 J/s </em>(200 watts)
========================
Here's something to think about: What could you do to make the lamp more efficient ? Answer: Use it for a heater !
If you use it for a heater, then the HEAT is the 'useful' part, and the light is the part that you really don't care about. Suddenly ... bada-boom ... the lamp is 90% efficient !
Answer:
In order to measure the amount of solution added in or drained out, the burette must be observed at eye level straight to the bottom of the meniscus. The liquid in the burette should be completely free of bubbles to ensure accurate measurements.
Have wavelengths that are longer than normal.