1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
2 years ago
6

When cars are equipped with flexible bumpers, they will bounce off each other during low-speed collisions, thus causing less dam

age. In one such accident, a 1850 kg car traveling to the right at 1.60 m/s collides with a 1400 kg car going to the left at 1.10 m/s . Measurements show that the heavier car's speed just after the collision was 0.270 m/s in its original direction. You can ignore any road friction during the collision.
Physics
1 answer:
iris [78.8K]2 years ago
5 0

Answer:

Explanation:

Given:

U1 = 1.6 m/s

U2 = -1.1 m/s

M1 = 1850 kg

M2 = 1400 kg

V1 = 0.27 m/s

Using momentum- collision equation,

M1U1 + M2U2 = M1V1 + M2V2

1850 × 1.6 - 1400 × 1.1 = 1850 × 0.27 + 1400 × V2

1420 = 499.5 + 1400V2

V2 = 0.6575 m/s

B.

KE = 1/2 × MV^2

KEa1 + KEa2 = KEb1 + KEb2

Delta KE = KE2 - KE1

KEa1 = 2368 J

KEb1 = 847 J

KEa2 = 67.433 J

KEb2 = 302.6 J

KE1 = KEa1 + KEb1

= 3215 J

KE2 = 370.033 J

Delta KE = -2845 J.

You might be interested in
How do you find the number of neutrons
sammy [17]

the mass number minus the atomic number

8 0
2 years ago
A 95kg fullback (football player for those not into sports) moving south with a speed of 5.0 m/s has a perfectly inelastic colli
Lunna [17]

Answer:

a.  v=3.11mls, 29.4^{0}

b.   K.E =-697.8J

Explanation:

To calculate the values in the  question, a deep understanding of perfect inelastic collision is important.

When two bodies undergo inelastic collision, two important parameters must be well understood i.e

Momentum: the momentum is always conserved in perfectly inelastic collision. i.e the total momentum after collision is the sum of the individual momentum before collision

Kinetic energy: Kinetic energy is not conserved due to dissipative force.

a.To calculate the velocity, we first find the total momentum before collision

Momentum of player 1 p_{1} =mv=95kg*5m/s\\p_{1} =475kgm/s\\

Momentum of player 2 p_{2} =mv=90kg*3m/s\\p_{1} =270kgm/s\\

Hence the total momentum p_{12}=p_{1}+p_{2}\\

Note, since the direction of movement before collision is due south and  due north respectively we have to represent the velocity using the rectangular coordinate

Hence  p_{12}=(m_{1}+m_{2})v=p_{1}i+p_{2}j\\

(95+90)v=475i+270j\\

v=2.57i+1.45j\\

solving for the resultant velocity, we have

v=\sqrt{2.75^{2} +1.45^{2}}\\ v=3.11mls

To calculate the direction of movement, we have

\alpha =tan^{-1}=\frac{v_{j} }{v_{i}}\\  \alpha =tan^{-1}=\frac{1.45}{2.57}\\\alpha =29.4^{0}

b. to calculate the decrease in total kinetic energy, before collision, the total kinetic was

K.E_{initial} =\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2}.\\K.E_{initial} =((1/2)*95*5^{2})+((1/2)*90*3^{2})\\K.E_{initial} =1187.5+405\\K.E_{initial} =1592.5J\\

And the final kinetic energy after collision is

K.E_{final} =\frac{1}{2}(m_{1}+m_{2} )v^{2}\\  K.E_{final} =\frac{1}{2}(95+90)* 3.11^{2}\\ K.E_{final} =894.7J

The decrease in Kinetic energy is

K.E =K.E_{final}- K.E_{initial}=894.7-1592.5

K.E =-697.8J

The negative sign indicate a decrease in Kinetic energy

4 0
2 years ago
If mechanical energy is conserved, then a pendulum that has a potential energy of 20 J at its highest point and 0.5 J at its low
liraira [26]
At the highest point: kinetic energy is 0 due to the speed  is 0

So the total mechanical energy is 20

Assume no frictions present, then the mechanical energy is conserved

So at the lowest point, kinetic energy = mechanical energy - potential energy

Answer will be 20 - 0.5 = 19.5 J
4 0
3 years ago
Points a and b lie in a region where the y-component of the electric field is Ey=α+β/y2. The constants in this expression have t
Drupady [299]

Answer:

V_{a} - V_{b} = 89.3

Explanation:

The electric potential is defined by

         V_{b} - V_{a} = - ∫ E .ds

In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.

         V_{b} - V_{a} = - ∫ E ds

We substitute

         V_{b} - V_{a} = - ∫ (α + β/ y²) dy

We integrate

          V_{b} - V_{a} = - α y + β / y

We evaluate between the lower limit A  2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m

           V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)

            V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33

            V_{b} - V_{a} = - 89.3 V

As they ask us the reverse case

             V_{b} - V_{a} = - V_{b} - V_{a}

             V_{a} - V_{b} = 89.3

3 0
3 years ago
I’m not sure how to solve this
spayn [35]

Answer:

Option 10. 169.118 J/KgºC

Explanation:

From the question given above, the following data were obtained:

Change in temperature (ΔT) = 20 °C

Heat (Q) absorbed = 1.61 KJ

Mass of metal bar = 476 g

Specific heat capacity (C) of metal bar =?

Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:

1 kJ = 1000 J

Therefore,

1.61 KJ = 1.61 KJ × 1000 J / 1 kJ

1.61 KJ = 1610 J

Next, we shall convert 476 g to Kg. This can be obtained as follow:

1000 g = 1 Kg

Therefore,

476 g = 476 g × 1 Kg / 1000 g

476 g = 0.476 Kg

Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:

Change in temperature (ΔT) = 20 °C

Heat (Q) absorbed = 1610 J

Mass of metal bar = 0.476 Kg

Specific heat capacity (C) of metal bar =?

Q = MCΔT

1610 = 0.476 × C × 20

1610 = 9.52 × C

Divide both side by 9.52

C = 1610 / 9.52

C = 169.118 J/KgºC

Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC

6 0
2 years ago
Other questions:
  • As the video states, a person weighs less on the moon than on
    11·1 answer
  • The distance measured from trough to trough or crest to crest of a wave is called the
    7·2 answers
  • A river current has a velocity of 5 km/h relative to the shore. A boat moves in the same direction as the current at 4 km/h rela
    5·2 answers
  • Explain how the atmosphere and hydrosphere interact to create weather
    8·1 answer
  • What is the energy of a photon of blue light with a wavelength of 460 nm?
    12·1 answer
  • PLZ HELP ME Which are not correct statements?
    10·1 answer
  • What force will a proton experience in a uniform electric field whose strength is 2.00 x 10^5 Newtons per Coulomb? *
    12·1 answer
  • How much time does it take for a car with a speed of 85 m/s to drive a distance of 200 m? (1 point)
    15·1 answer
  • How are the interference patterns for light through a double slit and light through a single slit similar yet different
    5·1 answer
  • Sally and Sam are in a spaceship that comes to within 16,000 km of the asteroid Ceres. Determine the force Sally experiences, in
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!