Refer to the diagram shown below.
In this analysis, wind resistance is ignored, and g = 9.8 m/s².
The meat falls with zero vertical velocity, therefore the time, t, before the meat hits the ground is

If the fox catches the meat before it hits the ground, then the fox should travel a horizontal distance d in the same time that the meat travels a horizontal distance (7 -d).
The meat travels a distance of
7 - d = (1.2 m/s)*(1.75 s) = 2.1 m
or
d = 4.9 m
Let v = velocity of the fox when it catches the meat.
If the acceleration of the fox is a m/s², then
v = 1.75a
Also,

Answer: 2.37 m/s (nearest hundredth)
The answer is cooler. Hope this helps.
<span>d
The mass is doubled which means that both the momentum and kinetic energy are also doubled. Also the normal force that's acting along with the coefficient of kinetic friction is also doubled. So the friction that's working to slow down the crate is doubled. So the crate will have double the kinetic energy that needs to be dissipated, but the rate of dissipation is also doubled, so the total time required to dissipate the kinetic energy is the same. And since both crates start out with the same velocity and since they'll lose energy (and velocity) at the same proportional rate, they'll take the same distance to slide to a stop.</span>
Answer:
Inducted Magnetic field will be toward from you
Inducted current direction will be counter clockwise.
Explanation:
Lenz's law states that the direction of the current induced in a wire by a changing magnetic field is such that the magnetic field created by the induced current opposes the initial changing magnetic field.
So if the field begins to decrease, the induced magnetic field would try to stop this, so its direction will be the same as the magnetic field, toward from you.
This induced magnetic field is produced by the current in the wire. If the inducted magnetic field will be toward you, the right hand rule says that the direction from the inducted current will be counter clockwise.
Answer: C Tectonic Plates
Explanation: