<span>(symbol K)</span><span> Energy that an object possesses because it is in motion. It is the energy given to an object to set it in motion; it depends on the mass (</span>m) of the object and its velocity (v<span>), according to the equation K = 1/2 </span>mv2<span>. On impact, it is converted into other forms of energy such as heat, sound and light.</span>
Answer:
The correct answer is A
Explanation:
The question requires as well the attached image, so please see that below.
Coulomb's Law.
The electrical force can be understood by remembering Coulomb's Law, that describes the electrostatic force between two charged particles. If the particles have charges and , are separated by a distance r and are at rest relative to each other, then its electrostatic force magnitude on particle 1 due particle 2 is given by:
Thus if we decrease the distance by half we have
So we get
Replacing we get
We can then multiply both numerator and denominator by 4 to get
So we have
Thus if we decrease the distance by half we get four times the force.
Then we can replace the second condition
So we get
which give us
Thus doubling one of the charges doubles the force.
So the answer is A.
Answer:
Explanation:
The forces acting on a conductor carrying current placed in a magnetic field is analysed using the Fleming's left hand rule.
The rule states that "If the fire finger, the middle finger and the thumb are held mutually perpendicular to one another in a magnetic field, the fore finger acts in the direction of the magnetic field, the middle finger acts on the direction of the current while the thumb acts in the direction of the force.
Based on the rule, it can be inferred this current carrying wire placed in the magnetic field acts perpendicular to the magnetic field and force acting on the wire.
Answer:
Explanation:
means initial angular velocity, which is 0 rev/min
means final angular velocity, which is
t means time t= 3.20 s
one revolution is equivalent to 2πrad so the final angular velocity is:
= (2π/60) *2.513*10^{4} rad/s
= 2628.5 rad/s
so the angular acceleration, α will be:
α = 2628.5 rad/s / 3.20 s
so the rotational motion about a fixed axis is:
+ 2αΔTita where ΔTita is the angle in radians
so now find the ΔTita the subject of the formula
ΔTita =