The EMF induced in the second coil is 43 Volts.
Michael Faraday was the first to discover electromagnetic induction back in the 1830s. Faraday discovered that moving a permanent magnet in and out of a coil or a single loop of wire caused an electromotive force, or EMF—otherwise known as a voltage—to be produced.
Changing magnetic flux results in varied currents flowing through the coil, which in turn generates its own magnetic field. This self-induced EMF opposes the change that is creating it, and the stronger the opposing EMF is, the faster the rate at which the current is changing. According to Lenz's law, this self-induced EMF will oppose the change in current in the coil, and because of its orientation, it is typically referred to as a back-EMF.
To learn more about EMF please visit-
brainly.com/question/15121836
#SPJ4
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
Answer:
X=92.49 m
Explanation:
Given that
u= 21 m/s
h= 97 m
Time taken to cover vertical distance h
h= 1/2 g t²
By putting the values
97 = 1/2 x 10 x t² ( g = 10 m/s²)
t= 4.4 s
The horizontal distance
X= u .t
X= 21 x 4.4
X=92.49 m
The mode in this case would be 125 because it occurs the most in the sequence of numbers.
Answer:
They could lose their magnetism if they are dropped too hard or banging against something (the ground)
Explanation:
the domains may bump out of alignment. hope this helps ! :)