Answer:
The specific heat capacity of the unknown metal is 0.223 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case, you know:
- Q= 418.6 J
- c= ?
- m= 75 g
- ΔT= 25 C
Replacing:
418.6 J= c* 75 g* 25 C
Solving:

c= 0.223 
<u><em>The specific heat capacity of the unknown metal is 0.223 </em></u>
<u><em></em></u>
<u><em>
</em></u>
<u><em></em></u>
Explanation:
HCL you can do it yourself .try again
Explanation:
-Filter help — delete some big unreacted, undesirable species (norit is probably from what you are sorting through, its only carbon which cleans up things)
— extract with DCM because you are probably in an aqueous phase, and some butanoate is in it
- Anhydrous sodium absorbs excess of water (dries the material)
-evaporation in the hood to clear the DCM and crystallize the product.
Answer:
The answer to your question is: 6.55 x 10 ²³ atoms of Br
Explanation:
CH2Br2 = 37.9 g
MW CH2Br2 = (12 x 1) + (2 x 1) + (80 x 2) = 174 g
174 g of CH2Br2 ------------------ 160 g of Br2
37.9 g of CH2Br2 --------------- x
x = 37.9 x 160/174 = 34.85 g of Br
1 mol of Br ----------------- 160 g Br2
x ---------------- 174 g Be2
x = 174 x 1 /160 = 1.088 mol of Br2
1 mol of Br ----------------- 6.023 x 10 ²³ atoms
1.088 mol of Br ------------- x
x = 1.088 x 6.023 x 10 ²³ / 1 = 6.55 x 10 ²³ atoms
A metalloid is a metal and a nonmetal