Answer:
The handrails must be approximately 10.63 meters long
Explanation:
The given parameters are;
The height of the bleachers, h = 8 m
The depth of the bleachers, d = 7 m
The length of the hand rails to go along the bleachers from bottom to top is given by Pythagoras' Theorem as follows;
The length of the hand rail = √(d² + h²)
∴ The length of the hand rail = √(7² + 8²) = √113 ≈ 10.63
In order for the handrails to go along the bleachers from top to bottom, they must be approximately 10.63 meters long.
Answer:
The sound intensity of train is 1000 times greater than that of the library.
Explanation:
We have expression for sound intensity level,

A train whistle has a sound intensity level of 70 dB
We have

A library has a sound intensity level of about 40 dB
We also have

Dividing both equations

The sound intensity of train is 1000 times greater than that of the library.
Answer:
44.85C
Explanation:
Let the specific heat of glass thermometer be 0.84 J/g°C
Let the specific heat of water be 4.186 j/g °C
Let the water density be 1kg/L
136 mL of water = 0.136L of water = 0.136 kg of water = 136 g of water
Since the change of temperature on the glass thermometer is 43.6 - 22 = 21.6 C. We can then calculate the heat energy absorbed to it:

Assume no energy is lost to outside, by the law of energy conservation, this heat energy would come from water




The broom handle that she have to balance if she hung a 400g mass from the end of the broom handle is 5.24m
This problem is centered on moment. Moment is the turning effect of a force about a point. It is expressed as:
Moment = Force× Distance
According to principle of moment, the sum of clockwise moment is equal to sum of anticlockwise moment at shown
M1d1 = M2d2
Given the following
M1 = 1.5kg
d1 = 1.4m
M2 = 400g = 0.4kg
d2 is required
Substitute
1.5(1.4) = 0.4d2
2.1 = 0.4d2
d2 = 2.1/0.4
d2 = 5.24m
Hence the broom handle that she have to if she hung a 400g mass from the end of the broom handle is 5.24m
Learn more here: brainly.com/question/21945515
<span> Atmospheric pressure decreases with altitude is because of gravity . The more you are away from the surface, the less atmosphere you have above you. The relationship between the atmospheric pressure and altitude depends on the mass of the planet.
hope this helps </span>